
Release 3.1.0

Developer’s Guide

Created August 20, 2008

Updated September 5, 2008

© EPiServer AB

Copyright

This document is protected by the Copyright Act. Changes to the contents, or partial copying of the contents, may not be

made without permission from the copyright holder.

The document may be freely distributed in its entirety, either digitally or in printed format, to all EPiServer Community users and

developers.

Table of Contents | 3

Table of Contents

1 BASIC UNDERSTANDING 7
1.1 GETTING STARTED 7

1.1.1 Setting up Visual Studio .. 7
1.1.2 The role of EPiServer Community in an ASP.NET page ... 7

1.2 EPISERVER COMMUNITY DESIGN CONCEPT AND SIMILARITIES 8
1.2.1 Required Framework Componenta .. 8
1.2.2 EPiServer Community Entity Interfaces ... 9
1.2.3 EPiServer Community Core Modules ... 10
1.2.4 EPiServer Community EntityProviders .. 13
1.2.5 EPiServer Community AttributeDataTypeProviders ... 14

1.3 NAMESPACES 16
1.3.1 StarSuite.Core .. 16
1.3.2 StarSuite.Core.Cache .. 16
1.3.3 StarSuite.Core.Data ... 16
1.3.4 StarSuite.Core.Modules ... 17
1.3.5 StarSuite.Core.Globalization ... 17
1.3.6 StarSuite.Core.Modules.Security ... 17
1.3.7 StarCommunity.Core ... 17
1.3.8 StarCommunity.Core.Modules .. 17
1.3.9 StarCommunity.Core.Modules.Security .. 17
1.3.10 StarCommunity.Core.Modules.Tags ... 18
1.3.11 StarCommunity.Core.Modules.Rating ... 18
1.3.12 StarCommunity.Core.Modules.Categories ... 18
1.3.13 StarCommunity.Core.Modules.Attributes ... 18
1.3.14 StarCommunity.Core.Modules.Queries ... 18
1.3.15 StarCommunity.Core.Modules.Reporting ... 18
1.3.16 StarCommunity.Core.Modules.Logging .. 18
1.3.17 StarCommunity.Modules.Blog .. 18
1.3.18 StarCommunity.Modules.Calendar ... 19
1.3.19 StarCommunity.Modules.Chat... 19
1.3.20 StarCommunity.Modules.Club ... 19
1.3.21 StarCommunity.Modules.ConnectionLink ... 19
1.3.22 StarCommunity.Modules.Contact.. 19
1.3.23 StarCommunity.Modules.Contest .. 19
1.3.24 StarCommunity.Modules.DirectMessage ... 19
1.3.25 StarCommunity.Modules.DocumentArchive ... 19
1.3.26 StarCommunity.Modules.Expert ... 19
1.3.27 StarCommunity.Modules.Forum ... 19
1.3.28 StarCommunity.Modules.ImageGallery ... 19
1.3.29 StarCommunity.Modules.Moblog .. 20
1.3.30 StarCommunity.Modules.Moblog.ContentProviders.Unwire .. 20
1.3.31 StarCommunity.Modules.MyPage .. 20
1.3.32 StarCommunity.Modules.NML .. 20
1.3.33 StarCommunity.Modules.OnlineStatus ... 20
1.3.34 StarCommunity.Modules.Poll ... 20
1.3.35 StarCommunity.Modules.StarViral ... 20
1.3.36 StarCommunity.Modules.VideoGallery ... 20
1.3.37 StarCommunity.Modules.Webmail ... 20

4 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2 TUTORIALS 3
2.1 USER MANAGEMENT 3

2.1.1 Adding a User .. 3
2.1.2 Password Providers .. 4
2.1.3 Authenticating a User .. 5
2.1.4 Getting the Currently Logged in User ... 6
2.1.5 Removing a User ... 7
2.1.6 Restoring a User ... 7
2.1.7 Adding a User for Activation .. 8
2.1.8 Adding a User to a Group... 10

2.2 TAGS 12
2.2.1 Tagging an entity ... 12
2.2.2 Retrieving the tags of an entity .. 12
2.2.3 Removing a tag from an entity .. 13
2.2.4 Retrieving a tag cloud ... 13
2.2.5 Implementing tag functionality on other classes .. 13

2.3 RATING 14
2.3.1 Rating an entity .. 14
2.3.2 Examine if a entity is already rated by an user ... 14
2.3.3 Retrieving ratings for an entity ... 14
2.3.4 Retrieving entities based on average rating .. 15
2.3.5 Get Users Rated Items .. 15

2.4 CATEGORIES 16
2.4.1 Add a category... 16
2.4.2 Remove a category .. 16
2.4.3 Categorize an entity .. 16
2.4.4 Retrieving categories for an entity ... 17
2.4.5 Retrieving entities based on categories .. 17

2.5 ATTRIBUTES 18
2.5.1 Setting attribute values .. 18
2.5.2 Getting attribute values ... 18

2.6 QUERIES 19
2.6.1 Filter and and sort EPiServer Community objects .. 19
2.6.2 Filter on custom attributes .. 20
2.6.3 Using And / Or conditions .. 20
2.6.4 Remove Query Result Cache .. 21

2.7 REPORTING 22
2.7.1 Add a report ... 22
2.7.2 Examine if an entity has new (unattended) reports .. 23
2.7.3 Implementing IReportableEntity ReportData .. 23
2.7.4 Configure administrable types ... 26

2.8 LOGGING 26
2.8.1 Get entity log entries .. 27

2.9 BLOG 27
2.9.1 Adding a Blog .. 27
2.9.2 Removing a Blog ... 28
2.9.3 Changing blog properties ... 28
2.9.4 Adding a Blog Entry ... 29
2.9.5 Adding a Blog Entry with Future Publication Date ... 29
2.9.6 Getting Blog Entries ... 30
2.9.7 Commenting on a Blog Entry .. 31

2.10 CALENDAR 33
2.10.1 Adding a Calendar ... 33
2.10.2 Removing a Calendar ... 33
2.10.3 Remove a Calendar ... 34
2.10.4 Adding an Event .. 34

Basic Understanding | 5

© EPiServer AB

2.10.5 Adding a Recurring Event... 35
2.10.6 Inviting Users to an Event .. 37
2.10.7 Registering upon an Event Invitation .. 38

2.11 CHAT 41
2.11.1 Implementing the Chat Applets on an ASP.NET page .. 41
2.11.2 Base .. 43
2.11.3 ChatWindow .. 43
2.11.4 UserList .. 44
2.11.5 MessageBox ... 45

2.12 CLUB 46
2.12.1 Adding a Club ... 46
2.12.2 Removing a Club .. 47
2.12.3 Adding Club Members .. 47
2.12.4 Adding Club Ads .. 48

2.13 CONNECTIONLINK 50
2.13.1 Getting the Shortest Path .. 50

2.14 CONTACT 50
2.14.1 Adding a Contact Relation .. 50
2.14.2 Removing a Contact Relation .. 52
2.14.3 Approving a Contact Relation ... 53
2.14.4 ContactRelationCollections and Perspectives. .. 55
2.14.5 Configuration File .. 57

2.15 CONTEST 58
2.15.1 Get Contests ... 58
2.15.2 Get Contest Questions ... 58
2.15.3 Add Contest Submission .. 59
2.15.4 Get winners ... 60

2.16 DIRECTMESSAGE 62
2.16.1 Send a Message ... 62
2.16.2 Removing Messages .. 63
2.16.3 Listing Messages in Folders .. 64
2.16.4 Flag a Message as read ... 65

2.17 DOCUMENT ARCHIVE 66
2.17.1 Add a Document Archive ... 66
2.17.2 Remove a Document Archive ... 66
2.17.3 Add a Document .. 67
2.17.4 Update a Document ... 68
2.17.5 Remove a Document ... 68
2.17.6 Configuration File .. 69

2.18 EXPERT 70
2.18.1 Add an Expert .. 70
2.18.2 Add a Member Expert... 71
2.18.3 Remove an Expert ... 72
2.18.4 See if a User is an Expert ... 72
2.18.5 Add a Question ... 73
2.18.6 Assign a Question .. 74
2.18.7 Answer a Question ... 75
2.18.8 Approve an Answer .. 76
2.18.9 Get Questions Assigned to an Expert .. 76
2.18.10 Get Question Answers ... 77

2.19 FORUM 79
2.19.1 Adding a Forum ... 79
2.19.2 Adding a Topic ... 80
2.19.3 Locking a Topic .. 80
2.19.4 Removing a Topic .. 81
2.19.5 Moving a Topic .. 81
2.19.6 Adding a Reply ... 82
2.19.7 Removing a Reply ... 83

6 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2.20 IMAGE GALLERY 84
2.20.1 Adding an Image Gallery ... 84
2.20.2 Removing an Image Gallery .. 84
2.20.3 Adding an Image ... 85
2.20.4 Removing an Image ... 86
2.20.5 Crop and Rotate an Image .. 86
2.20.6 Getting a Thumbnail of an Image .. 87
2.20.7 Getting Images in an Image Gallery .. 88

2.21 MOBLOG 89
2.21.1 Redirecting an Unwire MMS to a Specific Destination .. 89

2.22 MYPAGE 91
2.22.1 Blocking a User .. 91
2.22.2 Seeing if a User is blocked ... 92
2.22.3 Getting Blocked Users ... 92
2.22.4 Setting a Portrait Image ... 93

2.23 NML 95
2.23.1 Rendering NML Content ... 96
2.23.2 Limiting Maximum Word Lengths ... 96

2.24 ONLINESTATUS 98
2.24.1 Seeing if a User is Online ... 98
2.24.2 Getting a User’s Last Login Date ... 98
2.24.3 Getting Currently Logged in Users ... 99

2.25 POLL 100
2.25.1 Adding a Poll ... 100
2.25.2 Removing a Poll ... 101
2.25.3 Voting in a Poll ... 102
2.25.4 Display the Current State of a Poll ... 103
2.25.5 Adding Choices after Creation ... 104
2.25.6 Add Choices to Existing Poll .. 105

2.26 STARVIRAL 106
2.26.1 Adding a Referral .. 106
2.26.2 Display the State of Referrals ... 106

2.27 VIDEO GALLERY 108
2.27.1 Video Gallery function (video formats) .. 108
2.27.2 Adding videos ... 109
2.27.3 Remove video .. 111
2.27.4 Update video .. 111
2.27.5 Get videos .. 112
2.27.6 Get preview frames ... 113
2.27.7 Playing a Video ... 113
2.27.8 The Configuration File ... 114

2.28 WEBMAIL 115
2.28.1 Getting the status of an account .. 115
2.28.2 Creating an account .. 115
2.28.3 Disabling, Reactivating and Permanently Removing Accounts ... 116
2.28.4 Managing the Mailbox Tree for an Account .. 118
2.28.5 Getting Messages .. 119
2.28.6 Sending a Message ... 120
2.28.7 The Configuration File ... 121

3 EXTENDING EPISERVER COMMUNITY 123
3.1 EXTENDING EPISERVER COMMUNITY CLASSES 123
3.2 BENEFIT FROM EPISERVER COMMUNITY FUNCTIONALITY IN THIRD PARTY CLASSES 126

3.2.1 Retrieving categories for MyClass .. 130
3.2.2 Retrieving MyClass entities based on categories ... 131

3.3 USE EPISERVER COMMUNITY CACHE SYSTEM FOR THIRD PARTY IMPLEMENTATIONS 131

Basic Understanding | 7

© EPiServer AB

1 Basic Understanding

1.1 Getting Started

1.1.1 Setting up Visual Studio

After the installation of EPiServer Community onto a Visual Studio Web Project the following steps needs to be taken.

• Add all assemblies as a reference to the project, Visual Studio will delete all unused assemblies from the bin

directory on rebuild, so if possible do not reference the assemblies in the bin directory directly.

1.1.2 The role of EPiServer Community in an ASP.NET page

EPiServer Community is the backbone of a community. It is the API that retrieves and stores data using an object

oriented structure and with high performance. The ASP.NET webpage comes into the picture when you want a way to

display and input this data, which means, EPiServer Community does not give you the set of web pages that makes up a

community but it allows you to create them with full customizability in quicker and more stable way than you could do

by coding a community from scratch.

8 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

1.2 EPiServer Community Design Concept and Similarities

The EPiServer Community framework design is written in such a way that developers will recognize the structure and

immediately start development in new areas based on previous experience of EPiServer Community development.

• Classes that commit and retrieve data all end with “Handler”, e.g. SiteHandler.

• Committing data consists of methods starting with “Add”, “Update” and “Remove”.

• Entity classes that hold data never contains methods for commiting data.

• Handler classes contain events for most common methods, like adding, removing and updating data.

1.2.1 Required Framework Componenta

EPiServer Community depends on a set of common classes, called “Required Framework Components” that reside in

the StarSuite-namespace. These classes handle what is common between EPiServer Community products, like site

partitioning and security and access rights. The later is described in the figure below.

An EPiServer product like EPiServer Community is actually a module of Required Framework Components and when a

web site is started it is these components that set up the necessary environment, loads the environment modules and

provides a module context.

Basic Understanding | 9

© EPiServer AB

1.2.2 EPiServer Community Entity Interfaces

The EPiServer Community Entity Interfaces allows for developers to benefit from EPiServer Community functionality

such as Rating, Categorization, Tags, Cacheing, Attributes and Queries.

10 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

1.2.3 EPiServer Community Core Modules

Included in the EPiServer Community Core are several modules. The modules are Security, Tags, Rating, Categories,

Attributes and Queries. These modules containinterfaces and classes that can be used throughout the EPiServer

Community system and also for third party classes that wish to benefit from this functionality.

StarCommunity.Core.Modules.Tags

Tags enable users to organize their content (often for the public) by tagging it with a certain word or phrase. All tags

can then be merged into a Tag Cloud where tags are shown with different weight depending on the popularity. To use

Tags, the class must implement the ITaggableEntity interface provided by EPiServer Community Framework. The Tag

system itself contains helper classes as shown in figure below. Coding samples using tags are found under the tutorial

section in this document.

StarCommunity.Core.Modules.Rating

Rating enables developers to implement rating functionality for all classes that implements the IRatableEntity interface.

Rated objects can be rated and retrieved based on their average rating. The rating system itself contains helper classes

as shown in figure below. Coding samples using rating are found under the tutorials section in this document.

Basic Understanding | 11

© EPiServer AB

StarCommunity.Core.Modules.Categories

Categories enable developers to implement categorization functionality for all classes that implement the

ICategorizableEntity. Interface. Categories can be either user defined or pre-defined and are stored in a tree structure.

An Object can be categorized by binding one or many categories to it and objects may then be retrieved based on

their categories. Examples of content commonly categorized are Images, Blogs and Messages. The category system itself

contains helper classes as shown in the figure below. Coding samples using Categories are found under the tutorial

section in this document.

StarCommunity.Core.Modules.Attributes

Attributes enable developers to add custom attributes and attribute values of both primitive and complex types for all

classes that implements IattributeExtendableEntity interface. Attributes together with Queries makes EPiServer

Community a very flexible development platform, which allows system architects and developers to extend the core

community functionality to meet highly specialized requirements.

In its simplest form, attributes are used directly on existing EPiServer Community objects in an ASP.NET page by using

the Set/GetAttributeValue methods. The following code sets and gets an attribute named “forum_attribute” to the

value of a forum instance for a StarCommunity.Modules.ImageGallery.ImageGallery object.

imageGallery.SetAttributeValue<Forum>("forum_attribute", forum);
forum = imageGallery.GetAttributeValue<Forum>("forum_attribute");

In this approach the developer needs to keep track of the strings representing the attribute, which can be ok for

systems with minor use of custom attributes. However, a more object-oriented approach is to create a new class that

inherits StarCommunity.Modules.ImageGallery.ImageGallery with a fixed forum property.

The attribute system also enables the possibility to have third party classes as attributes to EPiServer Community classes

and have EPiServer Community classes as attributes to third party classes.However, to use attributes in any other way

than the simplest form described above, you need to define your own EntityProviders and AttributeDataTypeProviders

to register new data types in the EPiServer Community context. EntityProviders are described in section 1.2.4.

The attribute system itself contains helper classes as shown in the figure below. Coding samples using Attributes are

found in the section 2.5.

12 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

StarCommunity.Core.Modules.Queries

Queries enables developers to get filtered collections of objects that have their database properties mapped in a

configuration file and have a criterion class that is derived from CriterionBase and where the criterion class defines the

filterable fields. All relevant EPiServer Community classes are ready for filtering and retrieval. Coding samples using

Queries are found in section 2.6.

The query system is described in the figure below using StarCommunity.Modules.Blog as an example.

Basic Understanding | 13

© EPiServer AB

1.2.4 EPiServer Community EntityProviders

An EntityProvider is a singleton class that implements StarSuite.Core.Data.IEntityProvider and is responsible for returning

instances of a specific type based on a DbDataReader or a unique ID. EntityProviders are already defined for all relevant

EPiServer Community classes.

Custom EntityProviders are necessary to define whenever third party classes are introduced in the EPiServer

Community context (For example custom classes that inherits EPiServer Community classes or implements EPiServer

Community interfaces). The following code snippets show how to define a custom EntityProvider for the example

custom class MyImageGallery that inherits StarCommunity.Modules.ImageGallery.ImageGallery.

public class MyImageGalleryEntityprovider : IEntityProvider

...

public object GetEntityInstance(Type type, DbDataReader reader)
{

 if(type == typeof(ImageGallery) || type == typeOf(MyImageGallery)

return new MyImageGallery(reader);
}

...

public object GetEntityInstance(Type type, int Id)
{

if(type == typeof(ImageGallery) || type == typeOf(MyImageGallery)

return ImageGalleryHandler.GetImageGallery(id);
}

Now, we need to add the Example.MyImageGalleryEntityProvider to the EntityProvider.config file and thus override the

ImageGalleryEntityProvider:

<EntityProvider>

<Name>Exempel.MyImageGalleryEntityProvider, Example</Name>
<SupportedTypes>

<SupportedType>

<Name>Example.MyImageGallery, Example</Name>
</SupportedType>

<SupportedType>

<Name>StarCommunity.Modules.ImageGallery.ImageGallery,
 StarCommunity.Modules.ImageGallery</Name>

</SupportedType>

</SupportedTypes>
</EntityProvider>

From now on, all requests for instances of the type Example.MyImageGallery and

StarCommunity.Modules.ImageGallery.ImageGallery will be run through Example.MyImageGalleryEntityProvider and thus

return an object of the Example.MyImageGallery type. Coding examples for creating entities are found in section 0.

14 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

1.2.5 EPiServer Community AttributeDataTypeProviders

An AttributeDataTypeProvider is a singleton class that implements

StarCommunity.Core.Modules.Attributes.DataTypes.IAttributeDataTypeProvider. An

AttributeDataTypeProvider is responsible for returning IAttributeDataType instances made to handle a certain type.

The IAttributeDataType should be able to translate this type into a primitive type that can be stored in the database.All

relevant EPiServer Community classes have AttributeDataTypeProviders defined. Custom AttributeDataTypeProviders

are necessary to define whenever a custom datatypeis createdthat is used as a value for attributes.The following code

snippets shows how to define a custom AttributeDataTypeProvider for the example custom class MyClass.

First we create the AttributeDataTypeProvider giving MyClass as a supported type. When GetDataTypeInstance is

called with MyClass as the type argument, we take the primitive data type values and create an instance of our

AttributeDataType class.

public class BlogAttributeDataTypeProvider

 : IAttributeDataTypeProvider
 {

 private static MyClassAttributeDataTypeProvider m_instance;

 private MyClassAttributeDataTypeProvider()
 {

 }

 #region IAttributeDataTypeProvider Members
 public Type[] SupportedTypes

 {

 get
 {

 return new Type[] { typeof(MyClass) };

 }
 }

 public IAttributeDataType GetDataTypeInstance(TypecomplexType,

List<object> dbValues)
 {

 if (complexType == typeof(MyClass))

 return new MyClassAttributeDataType(dbValues);
 else

 throw new NotSupportedException(String.Format("The type

'{0}' is not supported by this provider.", complexType.ToString()));
 }

 public static IAttributeDataTypeProvider GetProviderInstance()

 {
 if (m_instance == null)

 m_instance = new MyClassAttributeDataTypeProvider();

 return m_instance;
 }

 #endregion

 }

Basic Understanding | 15

© EPiServer AB

If MyClass implements IStarCommunityEntity we can inherit ComplexAttributeDataTypeBase<>, which

basically does all the work for us, we just define the complex datatype.

If MyClass does not implement IStarCommunityEntity we inherit AttributeDataTypeBase, and we will have to

do the conversion process on our own.

public class MyClassAttributeDataType : AttributeDataTypeBase
{

public MyClassAttributeDataType(List<object> dbValues)

: base(dbValues, typeof(MyClass), typeof(Int32), null, null)
{

 }

public override List<object> Values

 {

 get
 {

 List<object>objs = new List<object>();

 foreach (int id in DbValues)
 {

 MyClass mc = MyClassHandler.GetMyClass(id);

 if (mc != null)
 objs.Add(mc);

 }

 return objs;
 }

 set

 {
 if (value == null)

 throw new ArgumentNullException("value");

 List<object> dbValues = new List<object>();

 foreach (MyClassmc in value)
 dbValues.Add(mc.ID);

 DbValues = dbValues;
 }

 }

}

Now, when we update an IAttributeExtendableEntity with an attribute of type MyClass, the MyClassAttributeDataType

class will do the conversion.

public class MyClassAttributeDataType : ComplexAttributeDataTypeBase<MyClass>

{

public MyClassAttributeDataType(List<object> dbValues)
: base(dbValues, null, null)

 {

 }
}

16 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

1.3 Namespaces

1.3.1 StarSuite.Core

The StarSuite.Core namespace contains important startup classes like Settings, Site and SiteHandler and takes care of

loading modules in the correct order based on dependencies.

1.3.2 StarSuite.Core.Cache

The StarSuite.Core.Cache namespace contains the EPiServer Community Cache system. The cache is based on a tree-

structure with the ability to have dependencies between branches. Every cached object in products like EPiServer

Community implements the ICacheable interface, allowing an object to have a primary cache key. The cache then keeps

track of changes to this cache key and released other caches that also contain this object. All these features in

conjunction make the EPiServer Community cache a lot more precise than in previous versions.

The new cache system also implements the policy of read-only objects in cache. This is a big change since previous

versions, since now objects retrieved from methods needs to be cloned before any properties are updated. All

EPiServer Community entities have a Clone() method that will return a writable copy of the object.

1.3.3 StarSuite.Core.Data

The StarSuite.Core.Data namespace contains the database communication layer. It is called by all Factory classes to

open connections and transactions and makes it possible to run several method calls within one transaction.

bool alreadyInTransaction = DatabaseHandler.InTransaction;

if(!alreadyInTransaction)
DatabaseHandler.BeginTransaction();

try
{

 // execute a series of methods,

 // they will all be in the same transaction
 AddUser();

 SetAccessRights();

 // we are only responsible for commiting the transaction

 // if we were the ones to start it

 if(!alreadyInTransaction)
 DatabaseHandler.Commit();

} catch

{
 if(!alreadyInTransaction)

 DatabaseHandler.Rollback();

 throw;
}

Basic Understanding | 17

© EPiServer AB

1.3.4 StarSuite.Core.Modules

The StarSuite.Core.Modules namespace contains the classes and interfaces necessary for creating modules. To give an

example of a module EPiServer Community is actually one of them. And further down the module tree EPiServer

Community has its own modules.

1.3.5 StarSuite.Core.Globalization

The StarSuite.Core.Globalization namespace contains logic for retrieving and storing globalized and localized text strings

that can be used on a web site of different languages.

1.3.6 StarSuite.Core.Modules.Security

The StarSuite.Core.Modules.Security namespace contains the interfaces for users, groups and access rights. The logic is

then implemented in different assemblies depending on data source. The StarSuite.Security.Internal.dll assembly (shipped

with the installation) is an implementation of StarSuite.Core.Modules.Security that uses the SQL Server database as a

source.

1.3.7 StarCommunity.Core

The StarCommunity.Core namespace contains the important StarCommunitySystem and

StarCommunityContextclasses that give developer’s access to the EPiServer Community SecurityHandler.

1.3.8 StarCommunity.Core.Modules

This namespace contains the interface IStarCommunityEntity and the abstract implementation class

StarCommunityEntityBase. IStarCommunityEntity implements the blueprint for tagging, attributes, rating and

categorization. Also the Author classes and interfaces are located here, allowing for guests and users to identify

themselves when making posts.

1.3.9 StarCommunity.Core.Modules.Security

The StarCommunity.Core.Modules.Security namespace contains extended interfaces based on

theStarSuite.Core.Modules.Securitynamespace. Extensions include implementation of IStarCommunityEntity on users

and groups and the ability to store users for later activation by e-mail etc. The assembly

StarCommunity.Security.Internal.dll is an implementation of this that uses the SQL Server database as a data source.

// Get the translated text for the currently set culture
string t = GlobalizationHandler.GetTranslation("translation_key");

// Get the sql connection string from the starcommunity context

string cs = StarCommunitySystem.CurrentContext.SqlConnectionString;

// Get the currently logged in user. DefaultSecurity should be
// StarComunity.Security.Internal.SecurityHandler since no other

// handler is installed.

IUser u = (IUser)StarCommunitySystem.
CurrentContext.DefaultSecurity.CurrentUser;

18 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

1.3.10 StarCommunity.Core.Modules.Tags

This namespace contains the Tags core module whose functionality spans over all the EPiServer Community modules,

and optionally it may extend to third party modules as well. It allows for tagging an entity of any type (implementing the

ITaggableEntity interface) with a tag. A tag cloud may then be generated for the tags globally or by site and/or type

 See the section 2.6.2 for implementation details.

1.3.11 StarCommunity.Core.Modules.Rating

This namespace contains the Rating core module whose functionality spans over all the EPiServer Community modules,

and optionally it may extend to third party modules as well. It allows for rating an entity of any type (implementing the

IRatableEntity interface) providing a rating value. Entities may then be retrieved based on their average rating.

See section 2.3 for implementation details.

1.3.12 StarCommunity.Core.Modules.Categories

This namespace contains the Categories core module whose functionality spans over all the EPiServer Community

modules, and optionally it may extend to third party modules as well. It allows for categorizing an entity of any type

(implementing the ICategorizableEntity interface) providing one or many categories. Entities may then be retrieved

based on their categorization. See section 2.3.5 for implementation details.

1.3.13 StarCommunity.Core.Modules.Attributes

This namespace contains the Attributes core module whose functionality spans over all the EPiServer Community

modules, and optionally it may extend to third party modules as well. It allows for binding attribute values of primitive or

complex types to an entity of any type (implementing the IAttributeExtendableEntity interface). See section 2.5 for

implementation details.

1.3.14 StarCommunity.Core.Modules.Queries

This namespace contains the Queries core module whose functionality spans over all the EPiServer Community

modules, and optionally it may extend to third party modules as well. It exposes the base functionality of queries and

criteria and is not used directly, but instead through implementations of these base classes. Queries allows for retrieving

dynamically filtered results. See section 2.6 for implementation details.

1.3.15 StarCommunity.Core.Modules.Reporting

This namespace contains the abuse reporting core module whose functionality spans over all the EPiServer Community

modules, and optionally it may extend to third party modules as well. It exposes the base functionality foradding reports

for any type (implementing IReportableEntity interface).See section 2.6.4 for implementing details.

1.3.16 StarCommunity.Core.Modules.Logging

This namespace contains the logging core module whose functionality spans over all the EPiServer Community modules,

and optionally it may extend to third party modules as well. It exposes the base functionality forretrieving llog entries for

any type (implementing ILoggableEntity interface). See Section 2.8 for implementation details.

1.3.17 StarCommunity.Modules.Blog

The StarCommunity.Modules.Blog namespace contains classes for creating and managing blogs.

Basic Understanding | 19

© EPiServer AB

1.3.18 StarCommunity.Modules.Calendar

The StarCommunity.Modules.Calendar namespace contains classes for creating and managing calendars, events, event

invites and event registrations.

1.3.19 StarCommunity.Modules.Chat

The StarCommunity.Modules.Chat namespace contains classes for creating and managing chat rooms, chat users and

chat moderators.

1.3.20 StarCommunity.Modules.Club

The StarCommunity.Modules.Club namespace contains classes for creating and managing clubs, club members, club ads

and club keywords.

1.3.21 StarCommunity.Modules.ConnectionLink

The StarCommunity.Modules.ConnectionLink namespace contains classes for retrieving the shortest path between two

users with the use of a breadth-first algorithm.

1.3.22 StarCommunity.Modules.Contact

The StarCommunity.Modules.Contact namespace contains classes for managing one-way or two-way relations between

users. Create relations immediately or let users approve them by the use of relations of the type “Request”.

1.3.23 StarCommunity.Modules.Contest

The StarCommunity.Modules.Contest namespace contains classes for managing contests with alternative and free-text

questions.

1.3.24 StarCommunity.Modules.DirectMessage

The StarCommunity.Modules.DirectMessage namespace contains classes for sending and receiving direct-messages.

Messages can be sent to multiple recipients at once and also be used in “System” mode, which allows you to send

messages to a large number of users without performance drop.

1.3.25 StarCommunity.Modules.DocumentArchive

The StarCommunity.Modules.DocumentArchive namespace contains classes for storing documents and creating folder

structures.

1.3.26 StarCommunity.Modules.Expert

The StarCommunity.Modules.Expert namespace contains classes for creating and managing experts, assign questions,

approve answers and synchronize with forum rooms.

1.3.27 StarCommunity.Modules.Forum

The StarCommunity.Modules.Forum namespace contains classes for creating forums and moderate topics.

1.3.28 StarCommunity.Modules.ImageGallery

The StarCommunity.Modules.ImageGallery namespace contains classes for creating image galleries, generating

thumbnails, cropping, resizing and promoting of images.

20 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

1.3.29 StarCommunity.Modules.Moblog

The StarCommunity.Modules.Moblog namespace contains classes for receiving MMS messages sent from mobile

phones. Moblog comes integrated with the mobile enabler Unwire but can easily be integrated with any other enabler.

1.3.30 StarCommunity.Modules.Moblog.ContentProviders.Unwire

The StarCommunity.Modules.Moblog.ContentProviders.Unwire namespace contains the classes of the Unwire mobile

enabler.

1.3.31 StarCommunity.Modules.MyPage

The StarCommunity.Modules.MyPage namespace contains classes for presenting a user, block other users and easily

reach other modules connected to a user.

1.3.32 StarCommunity.Modules.NML

The StarCommunity.Modules.NML namespace contains classes for rendering HTML content based on a dynamically

defined set of tags and attributes.

1.3.33 StarCommunity.Modules.OnlineStatus

The StarCommunity.Modules.OnlineStatus namespace contains classes for monitoring if a user is online, when the user

last logged in or who is online at the moment.

1.3.34 StarCommunity.Modules.Poll

The StarCommunity.Modules.Poll namespace contains classes for creating and managing voting polls.

1.3.35 StarCommunity.Modules.StarViral

The StarCommunity.Modules.StarViral namespace contains classes for creating and managing viral marketing campaigns

to follow user’s recruitments and select the best recruiter.

1.3.36 StarCommunity.Modules.VideoGallery

The StarCommunity.Modules.VideoGallery namespace contains classes for creating video galleries and uploading videos

for transcoding into a web friendly format, like Adobe Flash Video.

1.3.37 StarCommunity.Modules.Webmail

The StarCommunity.Modules.Webmail namespace contains classes for sending and receiving e-mails over IMAP to be

presented on the website. Automatically synchronizes with the community user database.

Table of Contents | 3

2 Tutorials

2.1 User Management

User Management in EPiServer Community is done through a singleton of the type

StarCommunity.Core.Modules.Security.ISecurityHandler that is reached through the property DefaultSecurity at

StarCommunity.Core.StarCommunitySystem.CurrentContext.DefaultSecurity.

2.1.1 Adding a User

One the first things you implement when creating a community is the possibility to register a membership and get a

User object instance representing this community member.

This article shows you, the developer, how to typically proceed to create this functionality with the help of the

EPiServer Community Framework.

Import Necessary Namespaces

First import the necessary namespaces that will be used to add a user. The namespaces StarCommunity.Core and

StarCommunity.Core.Modules.Security are described by clicking on their respective names. Make sure you add the

assemblies as a reference, mentioned in 1.1.1.

Declaring a New User Object

We then create a new User object instance by calling the NewUser property. This property always returns a new User

object instance and is handled by the running SecurityHandler.

Currently the user exists only in memory. Before committing the object, we will need to set a minimum list of

properties, or the API will throw an exception when we try to commit it to the database.

//Add user

IUser newUser = (IUser)StarCommunitySystem.
CurrentContext.DefaultSecurity.NewUser;

newUser.Alias = "Jhonny";

newUser.GivenName = "John";
newUser.SurName = "Doe";

newUser.BirthDate = new DateTime(1975, 3, 5);

newUser.EMail = "john@doe.com";
newUser.PassWord = "secret";

newUser.UserName = "john";

newUser.Culture = System.Globalization.CultureInfo.CurrentUICulture;

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

4 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

In the above example we end with setting the culture. The culture will be used to define the user’s language preference.

It is used in the administration interface, but if the user is not intended to be an administrator, this culture can be used

for other purposes. You can read more about attributes under Error! Reference source not found..

Committing the User Object to Database

Up until now the user has only existed in memory, to finalize the creation of the user we need to commit it to the

database. We do this by calling the AddUser method of the currently running SecurityHandler. Returned is the added

user, but with the new unique ID property set. This object can now be used as a user representation.

2.1.2 Password Providers

To enable a community implementor to securely store users' passwords, a PasswordProvider abstract base class is

provided in the StarSuite.Core.Modules.Security namespace.

Out of the box, three implementations of a password provider are supplied:

• StarSuite.Security.CleartextPasswordProvider(cleartext)

• StarSuite.Security.HMACMD5PasswordProvider(hashed)

• StarSuite.Security.HMACSHA256PasswordProvider (hashed)

You may explicity set which password provider a specific user should have by assigning it to the PasswordProvider

property of an IUser instance.

newUser = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.AddUser(newUser);

// Retrieve a user

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(1234);

user = (IUser)user.Clone(); // We intend to modify, so Clone()

user.PasswordProvider = PasswordProviderHandler.

GetPasswordProvider(typeof(HMACSHA256PasswordProvider));

// Only required if the old password cannot be read (i.e. current

// password provider stores passwords as hashes)

user.Password = "newpassword";

//Update the user

StarCommunitySystem.CurrentContext.DefaultSecurity.UpdateUser(user);

Tutorials | 5

© EPiServer AB

Note that when changing password providers, the old password must be readable (that is, the current password

provider must store the password in cleartext or encrypted) or a password must also be set in the same operation. If

possible, EPiServer Community will convert the password to its representation by the new password provider.

When installed, EPiServer Community is configured to use the CleartextPasswordProvider. This makes it simple to

change to a secure password provider at any time of the development process.

It is strongly recommended to change the password provider into something more secure. The MD5 and SHA256

password providers store the passwords as a hash, a process which is very difficult to reverse. In addition, these

password providers adds a salt to the password before hashing it which further adds to the difficulty of reversing the

process.

The default password provider is configured in your application's configuration file, in most cases web.config. To

configure a default password provider, add a sectionGroup to the configSections element in your configuration file that

look like the following:

Then, alongside the configSections element, add the following configuration, specifying the type that you want to use for

password provider if none is specified:

<netstar>

<starsuite.security

defaultPasswordProviderType="StarSuite.Security.HMACSHA256PasswordProvider,
StarSuite.Security"/>

</netstar>

An implementation of a password provider requires the following methods:

• byte[] EncryptPassword(string plaintext)

• string DecryptPassword(byte[] ciphertext)

• bool ValidatePassword(byte[] ciphertext, string plaintext)

• PasswordProviderFormat PasswordFormat { get; }

The EncryptPassword method serves to convert a plaintext password into a byte[] representation formatted by the

password provider's own choice. DecryptPassword reverses that process. This method is only called if the password

provider's PasswordFormat is either Cleartext or Encrypted.

Remember that if you added a salt, that salt must also be a part of the byte[] so that the state is maintained. This hint

should help you implement the ValidatePassword method. It takes the encrypted password and the plaintext password

and compares them. If the plaintext password matches the ciphertext password representation, ValidatePassword

returns true.

2.1.3 Authenticating a User

When you want to authenticate a login request by a member of a community, this can be done through running

SecurityHandler singleton.

<sectionGroup name="netstar">

<section
 name="starsuite.security"

allowDefinition="MachineToApplication"

allowLocation="false"
type="StarSuite.Security.ConfigurationHandler,StarSuite.Security" />

</sectionGroup>

6 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

Import Necessary Namespaces

First import the necessary namespaces that will be used to authenticate a user. The namespace StarCommunity.Core is

described by clicking on its name. Make sure you add the assembly as a reference, mentioned in 1.1.1.

Performing the Authentication

Authentication will require the username and password entered by the user. The call to AuthenticateUser will return if

it was a success or not, with the additional user out variable. The user variable will be set to the User object instance

found if authentication was successful.

This should set isAuthenticated to true and the user variable to the instance of the user we added in 2.1.1.

Where is the Authentication Ticket?

One important thing to remember is that EPiServer Community provides the means for authenticating but does not set

an actual authentication ticket in the ASP.NET authentication framework. To finalize the authentication this will have to

be done manually.

ASP.NET Membership Provider

Will be added in a later revision of the EPiServer Community 3.0 beta and will be mentioned in this document. The

above section on Authentication Tickets will then be obsolete.

2.1.4 Getting the Currently Logged in User

When a member of a community is logged in, you can get the User object instance from the running SecurityHandler

singleton through its CurrentUser property.

Import Necessary Namespaces

First import the necessary namespaces that will be used to get the currently logged in user. The namespaces

StarCommunity.Core and StarCommunity.Core.Modules.Security are described by clicking on their respective names.

Make sure you add the assemblies as a reference, mentioned in 1.1.1.

Getting the User Object

The CurrentUser property will return the IUser object instance representing the user with the username contained in

the authentication ticket.

using StarCommunity.Core;

StarSuite.Core.Modules.Security.IUser user = null;
bool isAuthenticated = StarCommunitySystem.CurrentContext.

DefaultSecurity.AuthenticateUser("john", "secret", out user);

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

Tutorials | 7

© EPiServer AB

2.1.5 Removing a User

Generally, removing a user in EPiServer Community is a process that can be undone, optionally it can be a permanent

action.

This article will show you, the developer, how to remove a user temporarily and permanently from the system.

Import Necessary Namespaces

First import the necessary namespaces that will be used to remove a user. The namespaces StarCommunity.Core and

StarCommunity.Core.Modules.Securityare described by clicking on their respective names. Make sure you add the

assemblies as a reference, mentioned in 1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

Temporarily Removing the User

When temporarily removing a user we have the option to undo the action afterwards. A removed user still keeps its

blog entries, forum topics, polls etc. The user will not be displayed in listings but when retrieved by id the Removed

property of the User object instance will be set to true.

Permanently Removing the User

Permanent removal is final; all content in the EPiServer Community associated with the user will be removed. The

removal is made permanent by passing the permanent parameter as true to the RemoveUser method.

2.1.6 Restoring a User

After a temporary removal it is possible to restore a user to an active state, this action can not be made on a

permanently removed user, since the user is then no longer available in the database.

Import Necessary Namespaces

First import the necessary namespaces that will be used to restore a user. The namespaces StarCommunity.Core and

StarCommunity.Core.Modules.Security are described by clicking on their respective names. Make sure you add the

assemblies as a reference, mentioned in 1.1.1.

IUser user = (IUser)StarCommunitySystem.CurrentContext.

DefaultSecurity.CurrentUser;

//Remove the user

StarCommunitySystem.CurrentContext.DefaultSecurity.RemoveUser(1234);

//Remove the user

StarCommunitySystem.CurrentContext.
DefaultSecurity.RemoveUser(1234, true);

8 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

Restoring the User

To restore the user we first need to get the user’s User object instance. We set the Removed property to false and

update the user, committing our changes to the database with the UpdateUser method. The user is now active again

and will reappear in listings and search queries.

2.1.7 Adding a User for Activation

User registration through activation by e-mail is a common way of assuring that a user’s e-mail address is valid. EPiServer

Community solves this by temporarily storing user information in a separate part of the system, not interfering with the

primary user storage. Upon activation the user data is moved to the primary user storage.

Import Necessary Namespaces

First import the necessary namespaces that will be used to add a user to the activation storage. The namespaces

StarCommunity.Core and StarCommunity.Core.Modules.Security are described by clicking on their respective names.

Make sure you add the assemblies as a reference, mentioned in 1.1.1.

Adding the User for Activation

In the example below we create a new User object instance as before, except this time we commit it with the method

AddUserToActivate. Returned is a Guid, it will be used as the activation key needed to activate the user.

using StarCommunity.Core;
using StarCommunity.Core.Modules.Security;

//Get the user by id

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(1234);
user = (IUser)user.Clone();

user.Removed = false;

//Update the user, restoring it to active state

StarCommunitySystem.CurrentContext.DefaultSecurity.UpdateUser(user);

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.NewUser;
user.Alias = "Jhonny";

user.GivenName = "John";

user.SurName = "Doe";

Tutorials | 9

© EPiServer AB

Activating a User

After committing a user to the activation storage, we can imagine a scenario where the user recently received the

activation key in an e-mail. We now have the activation Guid, and can activate the user.

Import Necessary Namespaces

First import the necessary namespaces that will be used to activate a user. The namespaces StarCommunity.Core and

StarCommunity.Core.Modules.Security are described by clicking on their respective names. Make sure you add the

assemblies as a reference, mentioned in 1.1.1.

Just Activating

In most cases we just want to activate the user:

In the above example we now got the new IUser object instance returned with its ID property set. The user is now

created and fully functioning.

Making Changes Before Activation

In some cases we need to make changes to the user data before activating it. We can do this by presenting the user

with the option to change its information before continuing with activation.

The difference is, we retrieve the User object instance based on the activation key through the GetUserToActivate

method, change the UserName property in this case, then commit the user to the database with the AddUser method.

AddUser will recognize the user as a user from the activation storage and will remove it. The Guid is now no longer

valid and the ID property is hereby the user’s identifier in the primary user storage.

user.BirthDate = new DateTime(1975, 3, 5);

user.EMail = "john@doe.com";
user.PassWord = "secret";

user.UserName = "john";

user.Culture =
System.Globalization.CultureInfo.CurrentUICulture;

Guid activationGuid = StarCommunitySystem.
CurrentContext.DefaultSecurity.AddUserToActivate(user);

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

IUser activatedUser = StarCommunitySystem.
CurrentContext.DefaultSecurity.

ActivateUser(

new Guid("3B78D829-04D5-47B0-BF5A-32C47A460FEC")
);

IUser activationUser = StarCommunitySystem.

CurrentContext.DefaultSecurity.

GetUserToActivate(
new Guid("3B78D829-04D5-47B0-BF5A-32C47A460FEC")

10 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2.1.8 Adding a User to a Group

Having users as members of groups, allow you to instantly give a EPiServer Community user a certain set of access

rights. Access rights set on groups are automatically inherited by its members, is it users or child groups.

This article will show you, the developer, how to add a user to a group, which can be useful when registering a member

of a community.

Import Necessary Namespaces

First import the necessary namespaces that will be used to add a user to a group. The namespaces

StarCommunity.Core and StarCommunity.Core.Modules.Security are described by clicking on their respective names.

Make sure you add the assemblies as a reference, mentioned in 1.1.1.

);

activationUser.UserName = "changed";

activationUser = StarCommunitySystem.CurrentContext.
DefaultSecurity.AddUser(activationUser);

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

Tutorials | 11

© EPiServer AB

Attaching the Group

To attach the group to a user, simply add the Group object instance into the user’s GroupCollection, visible through the

Groups property. The group is now only attached to the user in memory, so adding or updating the user as a final step

is required. In this example we commit the user by calling the UpdateUser method.

//Get the user by id

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(1234);
user = (IUser)user.Clone();

//Get the group by id
IGroup group = (IGroup)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetGroup(1234);

user.Groups.Add(group);

//Update the user
StarCommunitySystem.CurrentContext.DefaultSecurity.UpdateUser(user);

12 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2.2 Tags

A Tag can be considered to be equivalent to a word or phrase that is used by users to organize their content,

commonly for the public. The use the Tag system, first import the necessary namespace:

2.2.1 Tagging an entity

The process of associating a tag with an entity item is done via the EntityTag class. The EntityTag enables the developer

to add information of who tagged the item, available via the Tagger property of the EntityTag class. Keep in mind that

each entity item can only be tagged with a Tag once, just as services like Flickr.

//Get the user by id

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(1234);

//Get the blog by id

Blog b = BlogHandler.GetBlog(1);
if (b != null)

{

 b = (Blog)b.Clone();
 b.EntityTags.Add(new EntityTag(new Tag("foo"), new UserAuthor(user)));

 BlogHandler.UpdateBlog(b);

}

2.2.2 Retrieving the tags of an entity

Retrieving the tags that an entity object has been tagged with is as simple as enumerating the Tags property of the

StarCommunityEntityBase-derived object.

using StarCommunity.Core.Modules;

using StarCommunity.Core.Modules.Security ;

using StarCommunity.Core.Modules.Tags;
using StarCommunity.Modules.Blog; //only for this example.

//Get the blog by id
Blog b = BlogHandler.GetBlog(1);

if (b != null)

{
foreach(EntityTag et in b.Tags)

{

 Console.Write("Tag name: "+et.Tag.Name);
 Console.Write(et.Tagger.Name);

 }

}

Tutorials | 13

© EPiServer AB

The Tag object is defined by its name. This makes it simple to retrieve the objects that have been tagged with "foo":

Tag t = new Tag("foo");
int numberOfItems = 0;

ITaggableEntity[] taggedObjects =

 t.GetItems(/*site*/null, 1, 10, out numberOfItems);

Items returned may be of different types; it may be Blogs, Images or Contacts that have been tagged with this the tag

"foo". Common to all returned objects are that they all implement the ITaggableEntity interface, either directly or

indirectly via the StarCommunityEntityBase base class.

It is also possible to retrieve the items of a specific type tagged with a tag:

Tag t = new Tag("foo");

int numberOfItems = 0;

ITaggableEntity[] taggedObjects =
 t.GetItems(typeof(Blog), /*site*/null, 1, 10, out numberOfItems);

2.2.3 Removing a tag from an entity

To remove a tag from an entity object, just call the RemoveTag method.

//Get the blog by id

Blog b = BlogHandler.GetBlog(1);
b.Tags.RemoveTag("foo");

2.2.4 Retrieving a tag cloud

A tag cloud is an alphabetically sorted list of the most popular tags of a certain type or globally within the system. Each

tag in the list has a relative weight to the other items in the list, which is commonly used to determine the font size

when rendering the tag on a web page. The EPiServer Community tag system tries to retrieve a tag from each initial

letter (grouping digits and non-letter characters) so that the correct number of tags is returned (defaults are configured

in Tag.config). If the set needs to be expanded, more tags from the most popular initial letters are added to the set. If

the set needs to be reduced, the least popular tags are eliminated from the set. Heuristics are applied at an early phase

so that noise tags are removed (tags with very low popularity compared to the most popular tags in the set). Each item

in a tag cloud encapsulates a Tag and its weight relative the other items in the tag cloud. A weight is an integer value, its

lower and upper boundary configured in Tag.config.

TagCloud cloud = TagHandler.GetTagCloud();

foreach (TagCloudItem item in cloud.Items)

{
 Response.Write("{0} ",

 item.Tag.Name, item.Weight);

 Response.WriteLine();
}

2.2.5 Implementing tag functionality on other classes

In the StarCommunity.Modules.Blog namespace alone there are a number of entity classes, such as Blog, Entry and

EntryComment which all inherit StarCommunityEntityBase. The base class implements an ID property and the Tags

property, and it is left to the entity class to implement the remaining properties.

14 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

The EPiServer Community tag system allows for each entity class to have their own ID domain. However, it is required

that the combination of entity type and a single integer ID uniquely specifies an instance of the entity class.

For the tag system to be able to recreate the objects there must be an EntityProvider configured for the Type that has

been tagged. Providers are already configured for all relevant EPiServer Community objects.

2.3 Rating

The rating system allows for rating of objects that implements the IRatableEntity interface. A Rating is defined as the

object to rate, the rating value and the rater. Rated entities can then for example be retrieved by the average rate. The

use the Rating system, first import the necessary namespace:

2.3.1 Rating an entity

In this example we use a Blog to rate. However, the similar approach is taken for all ratable entities.

2.3.2 Examine if a entity is already rated by an user

It may be of interest to see if a ratable entity has already been rated by a specific user. We call the HasRated method in

the RatingHandler. In the example below, the method would return true.

2.3.3 Retrieving ratings for an entity

There are many different overloads for getting ratings for a specific item. The example below shows how to get all

ratings for Blog b, rated by a specific user

RatingCollection ratingCollection =

 b.GetRatings(new UserAuthor(user), 1, 10, out totalItems);

using StarCommunity.Core.Modules;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Core.Modules.Rating;
using StarCommunity.Modules.Blog; //only for this example.

//Get the rating user by id

IUser user =
(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(1234);

//Get the blog to rate by id
Blog b = BlogHandler.GetBlog(1);

//Create a rating object with the rating value 3
IRating rating = new Rating(b, 3, new UserAuthor(user));

//Rate the blog
RatingHandler.Rate(rating);

RatingHandler.HasRated(b, new UserAuthor(user));

Tutorials | 15

© EPiServer AB

2.3.4 Retrieving entities based on average rating

//Get all entities of type Blog with an average rating of 3
int totalRatedItems = 0;
RatableEntityCollection ratedEntities =

 RatingHandler.getRatedItems(typeof(Blog), 3, 1, 10,

 out totalRatedItems);

2.3.5 Get Users Rated Items

Import Necessary Namespaces

First import the necessary namespaces

using StarCommunity.Core.Modules.Security;

using StarCommunity.Core.Modules.Rating;

using StarCommunity.Modules.Contacts;
using StarCommunity.Modules.MyPage;

using StarCommunity.Modules.Blog;

Create a UserCollection:

// Get userA by id

IUser userA =
(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(1234);

// Create the UserCollection and add the user to it.
UserCollection userCollection = new UserCollection();

userCollection.Add(userA);

Now we can use the method GetUsersRatedItems of the ContactHandler class to retrieve the rating collection with

rated items:

int totalItems = 0 ;

RatingCollection rCollection =

RatingHandler.GetUsersRatedItems(userCollection, 1, 20,
out totalItems);

We can also specify a type of object to the method GetUsersRatedItems:

int totalItems = 0 ;

RatingCollection rCollection =
RatingHandler.GetUsersRatedItems(userCollection, 1, 20,out totalItems,

typeof(Blog));

16 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2.4 Categories

The Category system allows for categorization of objects that implements the IcategorizableEntity interface. In this

tutorial we use a Blog as an example.

 The use the Category system, first import the necessary namespaces:

using StarCommunity.Core.Modules;

using StarCommunity.Core.Modules.Security;
using StarCommunity.Core.Modules.Categories;

using StarCommunity.Modules.Blog; //only for this example.

2.4.1 Add a category

Categories may be added programmatically or in the administration interface. Categories a stored in a tree structure as

shown in the example below.

//Create a new (root) category

ICategory category = new Category("cars");

//Commit to database

ICategory rootCategory = CategoryHandler.AddCategory(category);

//Create a new sub category to root category

ICategory subCategory = new Category("Volvo", rootCategory);

//Commit to database

CategoryHandler.AddCategory(subCategory);

2.4.2 Remove a category

Categories may be removed programmatically or in the administration interface. You can get a category by id, by path

or by name. This is an example to remove a category by its path.

2.4.3 Categorize an entity

A categorizable entity can have one or more categories added to it.

//Get the blog to categorize by id

Blog blog = (Blog)BlogHandler.GetBlog(1).Clone();

//Get the category to remove by path

ICategory category = CategoryHandler.GetCategory("cars/Volvo");

//Remove the category

CategoryHandler.Removecategory(category);

Tutorials | 17

© EPiServer AB

//Get the category by id
Category category = CategoryHandler.GetCategory(1);

//Add the category to the blog
blog.Categories.Add(category);

//Update the blog to commit data to the database
BlogHandler.UpdateBlog(blog);

2.4.4 Retrieving categories for an entity

To get a collection of all categories connected to an entity, you just call the Categories property on the categorizable

entity.

//Get the blog to check for categories
Blog blog = BlogHandler.GetBlog(1);

//Get the categories for the blog
CategoryCollection categoryCollection = blog.Categories;

2.4.5 Retrieving entities based on categories

//Get the category for which we want entities
ICategory category = CategoryHandler.GetCategory(1);

//Add the category to the category collection
CategoryCollection categoryCollection = new CategoryCollection();

categoryCollection.Add(category);

//Get entities of type Blog that have been categorized with category

int totalItems = 0;

CategorizableEntityCollection categorizedEntities =
 CategoryHandler.GetCategorizedItems(typeof(Blog),

 categoryCollection, 1, 10, out totalItems);

18 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2.5 Attributes

The Attriibute system allows for developers to setting attributes and attributes values of primitive and complex types to

any object that implements the IAttributeExtendableEntiry interface. This provides a fast and flexible way to extend

EPiServer Community classes. The name of the attribute must be pre-defined in the database. This is commonly done

via the administration interface. The attribute name must be unique within a type.

Note that this tutorial only describes the most elementary way to use attributes. A more object-oriented approach is to

create a custom class derived from Blog that expose fixed properties. This would call for creating your own

EntityProvider as explained in section 1.2.4

First import the necessary namespaces:

using StarCommunity.Core.Modules.Attributes;

using StarCommunity.Modules.Blog; //only for this example.

2.5.1 Setting attribute values

In this example we set a DateTime and a DocumentArchive attribute to a blog:

//Get the blog for which set the attributes
Blog blog = (Blog)BlogHandler.GetBlog(1).Clone();

//Set a DateTime attribute that contains a last updated date
blog.SetAttributeValue<DateTime>("attr_last_updated", DateTime.Now);

//Get the document archive to use
DocumentArchive da = DocumentArchiveHandler.GetDocumentArchive(123);

//Set a DocumentArchive as an attribute to the blog
blog.SetAttributeValue<DocumentArchive>("attr_archive", da);

2.5.2 Getting attribute values

//Get the blog for wich we want the attriute values
Blog blog = BlogHandler.GetBlog(1);

//Get the last updated attribute
DateTime lastUpdated =

 blog.GetAttributeValue<DateTime>("attr_last_updated“);

//Get the document archive attribute

DocumentArchive da =

 blog.GetAttributeValue<DocumentArchive>("attr_archive");

Tutorials | 19

© EPiServer AB

2.6 Queries

The Query system allows for dynamically creating a set of criteria that should applied to a certain type before retrieving

it. A criterion can have an infinite amount of sub-criteria which in turn has their own sub-criteria. Queries like “return all

Clubs with more than 10 members, with a member age range between 25 and 30 years.” are now possible, and that’s

just one of the simple queries possible to compose. All relevant EPiServer Community classes are retrievable and can be

filtered on.

Note that this tutorial uses the Query system in the most elementary way. To read more about attributes, queries and

system design, please refer to section 0.

First import the necessary namespaces:

Using StarSuite.Core.Modules.Sorting;

using StarCommunity.Core.Modules.Queries;

using StarCommunity.Modules.Blog; //only for this example.

2.6.1 Filter and and sort EPiServer Community objects

In this example we want all blogs with the name “blog test” and that have 7 entries, ordered by author name ascending.

Note that the criteria may be nested, as is the case with the author name.

//Create a new BlogQuery

BlogQuerybq = new BlogQuery()

//Initialize criterions

bq.Name = new StringCriterion();
bq.NumEntries = new IntegerCriterion();

bq.Author = new AuthorCriterion();

bq.Author.Name = new StringCriterion();

//Set values to filter on

bq.Name.Value = "Blog Test";
bq.NumEntries.Value = 7;

//Order by author name
bq.OrderBy.Add(

new CriterionSortOrder(bq.Author.Name, SortingDirection.Ascending));

//Get the filtered blog collection

BlogCollection blogs = BlogHandler.GetQueryResult(bq);

20 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2.6.2 Filter on custom attributes

This is a simple example of how to filter on an attribute. In this case it’s a primitive string attribute, but it could very well

also be a complex attribute. If for example it was a Forum attribute, a ForumCriterion would be set instead of a

StringCriterion. Nesting of this criterion would then also be possible.

2.6.3 Using And / Or conditions

Criteria can be grouped and delimeted with And / Or. In this example we group the Name and NumEntries criteria,

which will return Blogs with the name “Blog Test” OR with 7 entries.

//Create a new BlogQuery

BlogQuery bq = new BlogQuery()

//Initialize criterions

bq.Name = new StringCriterion();

bq.NumEntries = new IntegerCriterion();
bq.Author = new AuthorCriterion();

bq.Author.Name = new StringCriterion();

//Set values to filter on

bq.Name.Value = "Blog Test";

bq.NumEntries.Value = 7;

// We group Name and NumEntries and put OR inbetween

CriteriaGroup cg = new CriteriaGroup();
cg.AddCriterion(bq.Name);

cg.AddCriterion(LogicalOperator.Or, bq.NumEntries);

bq.AddCriteriaGroup(cg);

//Order by author name

bq.OrderBy.Add(
new CriterionSortOrder(bq.Author.Name, SortingDirection.Ascending));

//Get the filtered blog collection
BlogCollection blogs = BlogHandler.GetQueryResult(bq);

//Create a blog query
BlogQuery bq = new BlogQuery();

StringCriterion strCriterion = new StringCriterion();
strCriterion.Value = "Stringvalue";

bq["stringattrib"] = strCriterion;

bq.Author = new AuthorCriterion();
bq.Author.Name = new StringCriterion();

bq.OrderBy.Add(

new CriterionSortOrder(bq.Author.Name, SortingDirection.Ascending));

BlogCollection blogs = BlogHandler.GetQueryResult(bq);

Tutorials | 21

© EPiServer AB

2.6.4 Remove Query Result Cache

Removes the cached result of a query by passing the original query or a close replica.

Import Necessary Namespaces

using StarCommunity.Core.Modules;
using StarCommunity.Core.Modules.Queries;

using StarCommunity.Modules.Blog;

using StarCommunity.Modules.Blog.Queries;

There are two possible ways a query can be passed to this method:

If using exactly as the original query, with the same criteria and parameter values. This will remove the cache for this

exact result set, example:

// Creating a new blog

string name = "My Blog";
Blog blog1 = new Blog(name);

blog1 = BlogHandler.AddBlog(blog1);

// New blog query

BlogQuery bq1 = new BlogQuery();

bq1.Name = new StringCriterion();
bq1.Name.Value = name;

bq1.NumEntries = new IntegerCriterion();

bq1.NumEntries.Value = 0;
bq1.OrderBy.Add(new CriterionSortOrder(bq1.Name, SortingDirection.Ascending));

// fill up the cache with the query result
BlogCollection bc1 = BlogHandler.GetQueryResult(bq1);

// remove the cache
QueryHandler.RemoveQueryResultCache(bq1);

22 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

Without any parameters, only the same set of criteria. This will remove the cache for all executed queries with the

same set of criteria, no matter the values of the parameters.

// Creating a new blog

string name = "My Blog";

Blog blog1 = new Blog(name);
blog1 = BlogHandler.AddBlog(blog1);

// New blog query using some parameters

BlogQuery bq1 = new BlogQuery();

bq1.Name = new StringCriterion();
bq1.Name.Value = name;

bq1.NumEntries = new IntegerCriterion();

bq1.NumEntries.Value = 0;

// fill up the cache with the query result

BlogCollection bc1 = BlogHandler.GetQueryResult(bq1);

// New blog query without parameters

BlogQuery bqCache = new BlogQuery();
bqCache.Name = new StringCriterion();

bqCache.NumEntries = new IntegerCriterion();

// Clear the cache with the created cache clearing query that contains no //

parameters.

// A query without parameters passed to RemoveQueryResultCache
// clear all caches with the passed query's set of criteria

// despite parameter values.

QueryHandler.RemoveQueryResultCache(bqCache);

2.7 Reporting

The report system allows for visitors or members to report content they might find offensive in any way. The reports

end up in the administration interface for further handling. The report system stores a snapshot copy of the reported

content (including images and files) as well as a reference to the reported entity.

First import the necessary namespaces:

using StarCommunity.Core.Modules.Reporting;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Blog; //only for this example.

2.7.1 Add a report

The first report on a specific object will create a ReportCase where all the following reports on the same object will be

stored under, as long as the ReportCase itself have the status “new” (no admin action is taken).

Tutorials | 23

© EPiServer AB

The created ReportCase can be accessed via the ReportCase property on the Report object.

2.7.2 Examine if an entity has new (unattended) reports

In some cases, there might be a good idea to show for other users that the content is already reported. The

IReportableEntity interface has the property IsReported which can be called on the reported entity.

// Get the entity to examine

Blog blog = BlogHandler.GetBlog(1234);

// Check if entity is reported

if(blog.IsReported)
 //The blog has new unattended reports

2.7.3 Implementing IReportableEntity ReportData

As for all EPiServer Community Framework interfaces the IReportableEntity is implemented by

StarCommunityEntityBase. However, the default implementation of the ReportData property in the IReportableEntity

interface (which is used by the reporting system to create the snapshot copy of the reported content and display it in

the admin interface) returns null. This default implementation is done due to backward compability issues when new

interfaces are introduced in the framework and the implementation is unknown. For third party entities that should be

reportable by the public, an override of the ReportData property is often needed. The ReportData return type is

IReportData which in turn has the following properties (set by its constructor):

• string Title

• string ContentXml

• DateTime Created

• IAuthor Author

The ContentXml enables you to customize how the reported content should be displayed in the admin interface and

you can add text, image and file elements in the order you find suitable.

ContentXml follows the following schema

<?xmlversion="1.0"encoding="utf-8"?>
<xs:schemaid="ReportedContent"targetNamespace="http://netstar.se/starcommunity

/reportedcontent"elementFormDefault="qualified"xmlns="http://netstar.se/starco

mmunity/reportedcontent"xmlns:mstns="http://netstar.se/starcommunity/reportedc

// Create a blog entry to report
Blog blog = BogHandler.AddBlog(new Blog("Blog to report"));

// Get current reporting user
IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.CurrentUser;

// Create a new report

IReport report = new Report(blog, "no good blog",

 “http://site.com/page”, user);

report = ReportHandler.AddReport(report);

24 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

ontent"xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:elementname="ReportedContent">

<xs:complexType>

<xs:sequence>
<xs:elementname="Text"type="xs:string"

maxOccurs="unbounded" />

<xs:elementname="Image"maxOccurs="unbounded">
<xs:complexType>

<xs:attributename="ID"type="xs:int"use="optional" />

<xs:attributename="Url"type="xs:string"use="optional" />
</xs:complexType>

</xs:element>

<xs:elementname="File"maxOccurs="unbounded">
<xs:complexType>

<xs:attributename="ID"type="xs:string" />

<xs:attributename="Url"type="xs:string" />
</xs:complexType>

</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>

</xs:schema>

Tutorials | 25

© EPiServer AB

Below an example of how an overrided ReportData property could look like (example taken from the Blog class):

using StarCommunity.Core.Modules.Reporting;
...

publicoverrideIReportData ReportData
{

get

{
//Init xml document

XmlDocument xmlDoc = newXmlDocument();

XmlDeclaration xmlDeclaration = xmlDoc.CreateXmlDeclaration("1.0", "utf-
8", "yes");

XmlElement rootNode = xmlDoc.CreateElement("ReportedContent");

xmlDoc.InsertBefore(xmlDeclaration, xmlDoc.DocumentElement);
xmlDoc.AppendChild(rootNode);

//Add presentation text element
XmlElement textElement = xmlDoc.CreateElement("Text");

textElement.AppendChild(xmlDoc.CreateTextNode

(this.PresentationText));
rootNode.AppendChild(textElement);

//Add presentation image if any
if (this.PresentationImage != null)

{

XmlElement imageElement = xmlDoc.CreateElement("Image");
imageElement.SetAttribute("ID",

this.PresentationImage.ID.ToString());

rootNode.AppendChild(imageElement);
}

returnnew
StarCommunity.Core.Modules.Reporting.ReportData(this.Name,

xmlDoc.OuterXml, this.Created, this.Author);

}
}

26 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2.7.4 Configure administrable types

In order to get a direct link to a page where the reported entity can be edited/removed in the admin interface, you

need to configure this in the AdminConfiguration.config file. You define a type name and the URLs to the add and

update page for thye entity. Below an example on how IUser and MyPage types configured:

<AdministrableTypes>

<AdministrableType>
<TypeNames>

<TypeName>StarCommunity.Core.Modules.Security.IUser,

StarCommunity.Core.Modules</TypeName>
<TypeName>StarCommunity.Modules.MyPage.MyPage,

StarCommunity.Modules.MyPage</TypeName>

</TypeNames>
<AddUrl>../StarCommunity/ControlWrapper.aspx?

controlEditUser.ascx&userId={0}</AddUrl>

<UpdateUrl>../StarCommunity/ControlWrapper.aspx?
controlEditUser.ascx&userId={0}</UpdateUrl>

<WindowWidth>820</WindowWidth>

<WindowHeight>600</WindowHeight>
</AdministrableType>

<AdministrableTypes>

A link to the admin page can then be retrieved by calling GetAdminPageUpdateLink or GetAdminPageAddLink in the

AdministrationModule.

using StarCommunity.Core.Web.Administration;

...

int userId = 1234;
string link =
 AdministrationModule.GetAdminPageUpdateLink(typeof(IUser),

 OpenTarget.Popup, “link text”, userId, "css class name");

2.8 Logging

The EPiServer Community logging system can create log entries of all changes (add, update and remove) for types that

are implementing the ILoggableEntity interface. The log entries are stored in the database table

tblStarCommunityActivityLog with the following fields:

• Log type (Add, Update or Remove)

• Object id

• Object type

• Created date

• IP-address

• User (if logged in)

Tutorials | 27

© EPiServer AB

The logging frequency is dependent on the setting in the CoreConfiguration.config file. Below is an excerpt from the

default core configuration:

Note: The activity log is not automatically purged at any point, so it is wise to log only as much as you need by

removing/adding supported types. If you need to log all, you should have a maintanence plan for the activity log.

2.8.1 Get entity log entries

The ILoggableEntity interface has only one method defined: GetLogEntries(). The method returns an

ActivityLogCollection of all log entries for the entity sorted by date, ascending. The method is used in the admin

interface to get log entries for reported entities. However, the result is not cached and the method should not be

called other than in controlled backend environments.

2.9 Blog

Management of blogs in EPiServer Community is done through the BlogHandler class in the StarCommunity.Blog

namespace. In EPiServer Community, blogs are used to represent a variety of blog-like functions such as guestbooks,

blogs, etc.

It is very common to have blogging functionality, guestbook functionality and similar on community sites.

This article shows you, the developer, examples of how to create this functionality with the help of the EPiServer

Community Framework.

Note, however, that in many of the common cases there is no need to explicitly create the Blog. Eg, each user’s MyPage

has both a Blog and a Guestbook property and each Club has a MessageBlog and a NewsBlog property. See the

respective chapters for these modules for further information.

2.9.1 Adding a Blog

Import Necessary Namespaces

First import the necessary namespaces that will be used to add a blog. The namespace StarCommunity.Modules.Blog is

described by clicking on its name. Make sure you add the assemblies as a reference, mentioned in 1.1.1.

using StarCommunity.Modules.Blog;

<ActivityLog>

<LogLevel>3</LogLevel><!-- 1=Log all, 2=Logging turned off,
3=Log only supported types (Default) -->

<SupportedTypes>

<SupportedType>
<Name>StarCommunity.Modules.Blog.EntryComment,

StarCommunity.Modules.Blog</Name>

</SupportedType>
...

28 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

Adding a Blog

To add a Blog, we create an instance of the Blog class (there are several constructors available). At this point the new

Blog exists only in memory.

Blog blog = new Blog("Blog name");

Committing the Blog Object to Database

Up until now the blog has only existed in memory, to finalize the creation of the blog we need to commit it to the

system. We do this by calling the AddBlog method of a BlogHandler. Returned is the added blog, with the new unique

ID property set. This object can now be used as a blog representation.

2.9.2 Removing a Blog

Import Necessary Namespaces

First import the necessary namespaces that will be used to remove a blog. The namespace

StarCommunity.Modules.Blog is described by clicking on its name. Make sure you add the assemblies as a reference,

mentioned in 1.1.1.

using StarCommunity.Modules.Blog;

To remove a blog we simply need to call the RemoveBlog method in the BlogHandler with a reference to a blog as

argument. This removes the entire blog permanently.

BlogHandler.RemoveBlog(blog);

2.9.3 Changing blog properties

Import Necessary Namespaces

First import the necessary namespaces that will be used to change properties of a blog. The namespace

StarCommunity.Modules.Blogis described by clicking on its name. Make sure you add the assemblies as a reference,

mentioned in 1.1.1.

using StarCommunity.Modules.Blog;

Changing a property of a blog

Although there are constructors for the blog object that lets you set the blog presentation text right from the start,

often you want to change this or other properties of a blog after the blog has been created. To do this, we fetch a blog

by its unique ID, and simply change the corresponding properties on the blog object.

Blog blog = BlogHandler.GetBlog(17);

blog.PresentationText = "New presentation text";

blog = BlogHandler.AddBlog(blog);

Tutorials | 29

© EPiServer AB

Committing the changes to the Blog Object to Database

Up until now the changes to this blog has only existed in memory, to commit these changes to the system we need to

call the UpdateBlog method in the BlogHandler.

2.9.4 Adding a Blog Entry

A blog itself is only a container of sorts, the blog entries contain the actual blog content.

Import Necessary Namespaces

First import the necessary namespaces that will be used to add an entry to a blog. The namespace

StarCommunity.Modules.Blogis described by clicking on its name. Make sure you add the assemblies as a reference,

mentioned in 1.1.1.

using StarCommunity.Modules.Blog;
using StarCommunity.Core.Modules;

Adding a Blog Entry

To add an entry, first we need references to the blog that we want to add the entry to, and the author that has written

the entry. There are several implementations of the IAuthor interface, such as GuestAuthor (the entry has no

connection to any site member), UserAuthor (a site member is to be shown as the author) and AnonymousAuthor (a

site member has written the entry, but has chosen to be anonymous, using a pseudonym).

As usual, there are several constructors with different sets of arguments that may be of interest.

Committing the Blog Entry Object to Database

Up until now the new blog entry has only existed in memory, to commit the new entry to the system we need to call

the AddEntry method in the BlogHandler.

Returned is the added blog entry, with the new unique ID property set. This object can now be used as a blog entry

representation.

Entry = BlogHandler.AddEntry(entry);

2.9.5 Adding a Blog Entry with Future Publication Date

If a blogger wants to add a blog entry, but wants to have it published in specific period of time, he can do it by setting

publication start and end date of the blog entry.

BlogHandler.UpdateBlog(blog);

IAuthor author = new GuestAuthor("Guest user");
Entry entry =

new Entry(blog, author, "Entry title", "Entry description");

30 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

Import Necessary Namespaces

First import the necessary namespaces that will be used to add an entry to a blog. The namespace

StarCommunity.Modules.Blog is described by clicking on its name. Make sure you add the assemblies as a reference,

mentioned in 1.1.1.

Adding a Blog Entry with Publication Dates

To add an Entry with specific publication dates, it is easier to use an Entry constructor that allows it. After crating the

object, we have to commit it in the database using BlogHandler object.

In the example below a GuestAuthor adds a new blog Entry. This blog Entry will be published in 7 days, and since then

will always be published (DateTime.MinValue means that this date is not considered when determining publication state

of the entry).

Publication Dates Meanings

When creating an Entry (as in the example above), we need to provide both publication start and publication end date.

If any of these dates will be DateTime.MinValue, it means that this date shall not be considered. This means that if we

provide DateTime.MinValue as publication start date, then there is no publication start date – the entry is in published

state until the publication end date. If the publication end date is DateTime.MinValue, it means that there is no

publication end date – the entry is published since the publication start date. Analogically, if both dates are

DateTime.MinValue, the entry is published since the creation date.

2.9.6 Getting Blog Entries

It is very often needed to retrieve blog entries, e.g. to list them on a web site. EPiServer Community provides several

overridden methods that allow entries to be retrieved for specific blog.

Import Necessary Namespaces

First import the necessary namespaces that will be used to add an entry to a blog. The namespace

StarCommunity.Modules.Blogis described by clicking on its name. Make sure you add the assemblies as a reference,

mentioned in 1.1.1.

using StarCommunity.Modules.Blog;

using StarCommunity.Core.Modules;

Blog blog = BlogHandler.GetBlog(12);

IAuthor author = new GuestAuthor("John");

Entry entry = new Entry(blog, author, "Entry title",

 "Entry content", DateTime.Now.AddDays(7), DateTime.MinValue);
BlogHandler.AddEntry(entry);

using StarCommunity.Modules.Blog;

Tutorials | 31

© EPiServer AB

Get All Blog Entries

To retrieve all the entries of a specific blog, one just needs to call GetEntries method of the Blog class. The simplest

override needs to be page number and number of items per page provided – this method is used in the example

below.

Blog blog = BlogHandler.GetBlog(12);

// get first 100 entries from the blog
EntryCollection entries = blog.GetEntries(1, 100);

Getting Entries from Specific Dates and Publication Status

When listing blog entries on a webpage, it is often needed to group entries by dates. To do it, there is a GetEntries

method overload that allows passing start and ending date of a timeframe that the entries were published (or not

published).

2.9.7 Commenting on a Blog Entry

You may or may not want to make it possible for users to comment on posted blog entries. To do this, we start by

creating a new comment.

Import Necessary Namespaces

First import the necessary namespaces that will be used to add a comment to a blog entry. The namespaces

StarCommunity.Core, StarCommunity.Core.Modules.Security and StarCommunity.Modules.Blog are described by

clicking on their names. Make sure you add the assemblies as a reference, mentioned in 1.1.1.

Adding a Blog Entry Comment

To add a comment to a blog entry, we need references to an entry and the author that wrote the entry. Then we

simply create a new instance of the EntryComment class.

IUser user =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(17);

IAuthor author = new UserAuthor(user);
EntryComment comment = new EntryComment(entry, author, "Comment title",

"Comment description");

Blog blog = BlogHandler.GetBlog(12);

// get fist 100 entries that are in "published" state

// between now and two weeks ahead
EntryCollection entries = blog.GetEntries(

 DateTime.Now, DateTime.Now.AddDays(14),

 EntryPublishState.Published, 1, 100);

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Blog;

32 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

Committing the Blog Entry Comment Object to Database

Up until now the new blog entry comment has only existed in memory, to commit the new entry comment to the

system we need to call the AddEntryComment method in the BlogHandler.

Returned is the added blog entry comment, with the new unique ID property set. This object can now be used as a

blog entry comment representation.

comment = BlogHandler.AddEntryComment(comment);

Tutorials | 33

© EPiServer AB

2.10 Calendar

Calendar functionality in EPiServer Community allows creating calendars and saving events within them, allowing

community members to be up-to-date with all the community happenings.

CalendarHandler is the class that provides calendar functionality. All other classes are entity classes and are used to hold

data retrieved from a database or prepared for saving to a database. Calenders are already provided for MyPage and

Club classes.

2.10.1 Adding a Calendar

Before any calendar functionality can be used, a calendar has to be created – this will allow all other activity. This

chapter will give you necessary knowledge to add a new calendar to the community calendars collection.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to create and add a calendar. You can go to the

StarCommunity.Modules.Calendar namespace description by clicking on its name. Make sure you add the assembly as a

reference, as it is mentioned in 1.1.1.

Create and Add a Calendar

To create a calendar, call Calendar class constructor providing the name for the calendar. After that, the calendar object

is created and is ready to be committed in the EPiServer Community database. To do it, call the AddCalendar method

of a CalendarHandler object. The AddCalendar method returns added Calendar object with unique ID property set to

a value returned from the database.

2.10.2 Removing a Calendar

When a calendar is no longer needed, it can be removed from the EPiServer Community database. Calendar removal is

always permanent, which means that removed calendar cannot be restored as it is deleted from the database.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to remove a calendar. You can see the description of the

StarCommunity.Modules.Calendar namespace by clicking on its name. Make sure you add the assembly as a reference,

as it is mentioned in 1.1.1.

using StarCommunity.Modules.Calendar;

// Create a new calendar and get the created instance back with its

// unique id set

Calendar c = new Calendar("New Calendar");
c = CalendarHandler.AddCalendar(c);

using StarCommunity.Modules.Calendar;

34 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2.10.3 Remove a Calendar

To remove a calendar, a valid Calendar object is needed – e.g. it can be retrieved from database first. After the

Calendar object is available, it can be removed from database by calling RemoveCalendar method of CalendarHandler

object.

Calendar c = CalendarHandler.GetCalendar(1234);

// Remove the calendar
CalendarHandler.RemoveCalendar(c);

2.10.4 Adding an Event

After a calendar is created, events can be added to it. Event class describes a real event that will occur at particular date

(or period), and contains information like arranger name, description, place, start date, end date etc.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to add a new event. You can read descriptions of the

namespaces StarCommunity.Core, StarCommunity.Core.Modules.Security and StarCommunity.Modules.Calendar by

clicking on respective name. Make sure you add the assembly as a reference, mentioned in 1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules;

using StarCommunity.Core.Modules.Security;
using StarCommunity.Modules.Calendar;

Tutorials | 35

© EPiServer AB

Create a New Event

Creating a new event is a simple call to the Event class constructor. To call the constructor, we need to provide

calendar that the event belongs to, arranger name, event author, event name, event description, event start and end

date and place where it will take place. We also decide whether or not the event shall be marked as published right

after adding it. After that, the event object will be created, and needs to be committed in the database using the

CalendarHandler.AddEvent method.

The Event object returned from AddEvent method has its ID property set to a value returned from database.

2.10.5 Adding a Recurring Event

A recurring event is one that occurs periodically at specified dates, e.g. someone’s birthdates is a recurring event, as it

occurs every year at specific day of specific month. In EPiServer Community, recurrence is defined using the

EventRecurrence class. This way, if the event shall be recurrent one, all that needs to be done is to create

EventRecurrence object and set it as a Recurrence property of the Event.

Recurrence Class Explained

The Recurrence class has several properties. To use the recurrence within the Calendar properly, you need to

understand what each property is used for.

• Frequency – this property defines how frequently the event is repeated. The property is of

EventRecurrenceFrequency enumeration type:

• DailyNumeric – the event is repeated every Interval days, where Interval is EventRecurrence class property,

starting from the event start date

• DailyWeekday – the event is repeated every weekday, starting from the start date, every Interval weeks (e.g.

every 2nd Tuesday)

• Weekly – the event occurs every Nth week at days specified in the DaysFlag property of the EventRecurrence

class, where N is the Interval specified for the EventRecurrence (e.g. Wednesdays and Fridays every 3 weeks)

• MonthlyNumeric – the event occurs every Nth month at the same day as the event start date, in intervals

specified with Interval property of the EventRecurrence (e.g. Every 15th day of every 3rd month)

Calendar c = CalendarHandler.GetCalendar(1234);

// Create the author of the event

IUser user = (IUser)StarCommunitySystem.CurrentContext.

 DefaultSecurity.CurrentUser;
UserAuthor author = new UserAuthor(user);

// Define start and end dates
DateTime startDate = new DateTime(2007, 6, 12);

DateTime endDate = new DateTime(2007, 6, 15);

// Create event object

Event ev = new Event(c, "Arranger name", author, "Event name", "Event

description", startDate, endDate, "Event place", true);

// Add event to the database

ev = CalendarHandler.AddEvent(ev);

36 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

• YearlyNumeric – the event occurs every Nth year at the same day and month as the event start date, in

intervals specified with Interval property of the EventRecurrence (e.g. every 31st May of every one year –

someone’s birthdays)

• Interval – specifies time interval between recurrent events. Interval specifies only the value, unit is defined with

Frequency property

• DaysFlag – days at which the event occurs, used only with Frequency set to EventRecurrenceFrequency.Weekly

• StartDate – start date of the recurrence

• EndDate – end date of the recurrence (only EndDate or MaxOccurrences can be set for recurrence, setting one

of those properties resets the second one)

• MaxOccurrences – maximum number of recurrences that can occur before the recurrence ends (only EndDate

or MaxOccurrences can be set for recurrence, setting one of those properties resets the second one)

Import Necessary Namespaces

First, import the necessary namespaces that will be used to add a recurrent event. The namespaces

StarCommunity.Core, StarCommunity.Core.Modules.Security and StarCommunity.Modules.Calendar are described by

clicking on respective name. Make sure you add the assembly as a reference, mentioned in 1.1.1.

using StarCommunity.Core;
using StarCommunity.Core.Modules;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Calendar;

Tutorials | 37

© EPiServer AB

Create Recurrent Event

Creating recurrent event is very similar to creation of a normal event. The only difference is that a RecurrentEvent class

object has to be created, and set to the event Recurrence property.

2.10.6 Inviting Users to an Event

When the event has been created, users can be invited to the event, and then e.g. invitation e-mails can be send to

them. In this section we will present how to create invites and bind them to the event.

Calendar c = CalendarHandler.GetCalendar(1234);

// Create the author of the event

IUser user = (IUser)StarCommunitySystem.CurrentContext.

 DefaultSecurity.CurrentUser;
UserAuthor author = new UserAuthor(user);

// Define start and end dates – used to compute event duration
DateTime startDate = DateTime.Now;

DateTime endDate = DateTime.Now.AddDays(1);

// Create event object

Event ev = new Event(c, "Arranger name", author, "Event name",

 "Event description", startDate, endDate, "Event place", true);

// define event recurrence – every 2 weeks on Mondays and

// Wednesdays, 10 times
EventRecurrenceFrequency frequency =

 EventRecurrenceFrequency.Weekly;

int interval = 2;
DateTime recStartDate = DateTime.Now;

DateTime recEndDate = DateTime.MinValue;

int maxOccurences = 10;
EventRecurrenceDaysFlag daysFlag =

 EventRecurrenceDaysFlag.Monday | EventRecurrenceDaysFlag.Wednesday;

// Create event recurrence object

ev.Recurrence = new EventRecurrence(frequency, interval,

 recStartDate, recEndDate, maxOccurences, daysFlag, 0);

// Add event to the database

ev = CalendarHandler.AddEvent(ev);

38 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

Import Necessary Namespaces

First, import the necessary namespaces that will be used to invite users to an event. The namespaces

StarCommunity.Core, StarCommunity.Core.Modules, StarCommunity.Core.Modules.Security and

StarCommunity.Modules.Calendar are described by clicking on respective name. Make sure you add the assembly as a

reference, mentioned in 1.1.1.

Invite User to an Event

To invite a user to an event, we need to have the Event object that the invite will be added to, and a UserAuthor

object that defines the user we want to invite. After the Invite object is created, it can be committed in the database by

calling AddInvite method of the CalendarHandler object.

2.10.7 Registering upon an Event Invitation

Similar to the invitations, users can register to events by themselves – we can imagine a scenario when promotional

event is prepared and only registered users will receive their individual codes to access the event (concert, show etc.).

using StarCommunity.Core;

using StarCommunity.Core.Modules;

using StarCommunity.Core.Modules.Security;
using StarCommunity.Modules.Calendar;

Event event = CalendarHandler.GetEvent(2323);

// Get the user to invite by id

IUser user = (IUser)StarCommunitySystem.
CurrentContext.DefaultSecurity.GetUser(1234);

UserAuthor invitee = new UserAuthor(user);

// Create an invitation

Invite invite = new Invite(event, invitee);

// Add invitation to the database

invite = CalendarHandler.AddInvite(invite);

Tutorials | 39

© EPiServer AB

Import Necessary Namespaces

First, import the necessary namespaces that will be used to register to an event. The namespaces StarCommunity.Core,

StarCommunity.Core.Modules, StarCommunity.Core.Modules.Security and StarCommunity.Modules.Calendar are

described by clicking on respective name. Make sure you add the assembly as a reference, mentioned in section 1.1.1.

Registering a User to an Event

Having an event, users can register to it if:

• The event SecurityStatus property is set to SecurityStatus.Open or – if the event SecurityStatus property is set

to SecurityStatus.Closed – the user has been invited to the event

• The day when a user wants to register is within the registration period defined for an event

• The number of users that registered to the event hasn’t reached the maximum number of registrations specified

for the event

• The user is not already registered to the event

using StarCommunity.Core;
using StarCommunity.Core.Modules;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Calendar;

40 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

Event event = CalendarHandler.GetEvent(2323);

// Get the user to register by id

IUser user = (IUser)StarCommunitySystem.
CurrentContext.DefaultSecurity.GetUser(1234);

UserAuthor registrant = new UserAuthor(user);

// Create a registration

Registration registration = new Registration(event, registrant);

// Register user to the event

try
{

 registration = CalendarHandler.AddRegistration(registration);

}
catch(MaxNumRegistrationsReachedException mnex)

{

 throw new Exception("Max number of registrations reached", mnex);
}

catch(AlreadyRegisteredException arex)

{
 throw new Exception("User is already registered", arex);

}

catch(RegistrationDateException rdex)
{

 throw new Exception("It is too early or too late to register",

 rdex);
}

catch(RegistrationNotInvitedException niex)

{
 throw new Exception("You have to be invited to register"

 + " to this event", niex);

}

Tutorials | 41

© EPiServer AB

2.11 Chat

The Chat Module enables users to interact with other users in real time. To join a discussion, the user simply opens a

page in their browser containing Java™ applets that connect to a chat server. Discussions take place in chat events, and

several chat events can be active simultaneously.

Chat events isolate discussions. Each chat event keeps a log of all users (and hostnames) that have entered or left the

chat event, what they saidand when they said it. That is, each chat event keeps separate logs and lists of currently logged

in users.

To get started, you will need some information from the chat server provider, such as the chat server’s hostname. This

information must be inserted in the corresponding parameters in the examples below.

2.11.1 Implementing the Chat Applets on an ASP.NET page

This section outlines the implementation of the required chat applets in an ASP.NET page. Details of how an applet is

embedded in a web page differ between browsers, so we will be using a JavaScript to output the HTML that has been

customized for the current browser.

<SCRIPT language="javascript">

function makeApplet(sArchive, sCodebase, sCode, sId, iWidth, iHeight,

aParams) {

 var _app = navigator.appName;
 if (_app == 'Microsoft Internet Explorer') {

 document.write('<OBJECT name="'+sId+'" id="'+sId+'"',

 'classid="clsid:'+
 '8AD9C840-044E-11D1-B3E9-00805F499D93" ',

 'width="'+iWidth+'" ',

 'height="'+iHeight+'" ',

 'codebase="http://java.sun.com/products/'+

 'plugin/autodl/jinstall-1_4_2-windows-'+
 'i586.cab#Version=1,4,2,0"', '>');

 document.write('<PARAM NAME="code"

VALUE="'+sCode+'">');
 document.write('<PARAM NAME="archive" VALUE="'+

 sArchive+'">');

 document.write('<PARAM NAME="codebase" VALUE="'+
 sCodebase+'">');

 document.write('<PARAM NAME="type"

VALUE="application/x-java-applet;version=1.4.2">');
 document.write('<PARAM NAME="mayscript"

VALUE="true">');

 document.write('<PARAM NAME="scriptable"
VALUE="true">');

 for(var i=0; i<aParams.length; i++)
 document.write('<PARAM

NAME="'+aParams[i][0]+

 '"
VALUE="'+aParams[i][1]+'">');

42 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

The chat applets are split into four parts to enable the designer of the page to design a suitable framework to embed

the applets into. Applets are rectangular, opaque objects that are configured as one of the following types:

• Base

• This (invisible) applet keeps track of the server connection(s) and does all non-GUI related tasks.

• ChatWindow

• This is the message window where messages from the participating users are displayed.

• UserList

• This applet displays a list of all the currently logged in users in the current chat event.

• MessageBox

• This optional applet is the input box where the user types its messages.

 document.write('</OBJECT>');
 }

 else /*if (_app == 'Netscape') */
 {

 document.write('<embed ',

 'width="'+iWidth+'" ',
 'height="'+iHeight+'" mayscript="true" ',

 'type="application/x-java-

applet;version=1.4.2" ',

 'pluginspage="http://java.sun.com/j2se/1.5.0/download.html" ',

 'id="'+sId+'" name="'+sId+'"
code="'+sCode+'" codebase="'+sCodebase+'"',

 'archive="'+sArchive+'" ');

 for(var i=0; i<aParams.length; i++)
 document.write(aParams[i][0]+'="'+

 aParams[i][1]+'" ');

 document.write('/>');

 }

}
</SCRIPT>

Tutorials | 43

© EPiServer AB

2.11.2 Base

The base applet is not visible to the end user, but it serves some very important functions. It is a one by one pixel

applet that connects and logs in to the chat server and therefore it requires parameters that determines which server to

connect to as well as the user’s display name.

2.11.3 ChatWindow

The chat window applet takes a number of parameters to configure its appearance and functionality. We will display a

selection of them here.

var _p = new Array();

_p[_p.length] = new Array("name", "chatWindow");

_p[_p.length] = new Array("dependencies", "chatBase");
_p[_p.length] = new Array("ircChannels", "");

_p[_p.length] = new Array("Caption", "Main");

_p[_p.length] = new Array("eventColors", "00CC00");
_p[_p.length] = new Array("nickColors", "000000");

_p[_p.length] = new Array("backgroundColor", "ecf2ec");

_p[_p.length] = new Array("base", "chatBase");
_p[_p.length] = new Array("moduletype", "ChatWindow");

_p[_p.length] = new Array("tabpanel_borderColor","bdcbef");

_p[_p.length] = new Array("tabpanel_hideTabs", "1");
_p[_p.length] = new Array("canStartPrivateConversations", "false");

_p[_p.length] = new Array("canDisplayPersonalPage", "false");

_p[_p.length] = new Array("messagePartClassName", "Chili"); _p[_p.length] =
new

Array("iconProviderURL", "/img.php/id={1}/prefix={0}");

_p[_p.length] = new Array("intromessage", "");

makeApplet("IrcChat.jar", "http://chat-server-host/", "ChatWindow.class",

function chatNickTaken() { alert("Sorry, your alias is taken."); }

var _p = new Array();
_p[_p.length] = new Array("name", "chatBase");

_p[_p.length] = new Array("dependencies", "chatWindow chatUserList

chatMessageBox");

// IRC Server information

_p[_p.length] = new Array("ircServerAddress", "chat-server-host");
_p[_p.length] = new Array("ircServerPort", "5678");

_p[_p.length] = new Array("ircServerPassword", "pass");

// IRC User information

_p[_p.length] = new Array("ircNick", "<%=IrcNick%>");

_p[_p.length] = new Array("ircUserName", "<%=UserID%>");
_p[_p.length] = new Array("ircRealName", "<%=Name%>");

_p[_p.length] = new Array("nickTakenHandler", "chatNickTaken();");

makeApplet("IrcChat.jar", "http://chat-server-host/", "Chat.class",

"chatBase", 1, 1, _p);

44 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

"chatWindow", "100%", "100%", _params);

2.11.4 UserList

The user list displays the current participants in the chat event. Parameters configure for example whether the

usernames are clickable or not.

function chatDoubleClickNick(strUserName, strNick) {

window.open("/user/"+strNick, "_blank");

}
var _p = new Array();

_p[_p.length] = new Array("name", "chatUserList");

_p[_p.length] = new Array("dependencies", "chatBase");
_p[_p.length] = new Array("ircChannels", "<%=ChannelName%>");

_p[_p.length] = new Array("Caption", "UserList");

_p[_p.length] = new Array("backgroundColor", "FFFFFF");
_p[_p.length] = new Array("base", "chatBase");

_p[_p.length] = new Array("moduletype", "UserList");

_p[_p.length] = new Array("canStartPrivateConversations", "false");

//_p[_p.length] = new Array("canDisplayPersonalPage", "false");

//_p[_p.length] = new Array("hideAnonymousUsers", "true");
_p[_p.length] = new Array("displayGroup", "false");

_p[_p.length] = new Array("displayIcons", "false");

makeApplet("IrcChat.jar", "http://chat-server-host/", "ChatUserList.class",

"chatUserList", "100%", "100%", _p);

Tutorials | 45

© EPiServer AB

2.11.5 MessageBox

This applet displays a text box where the user inputs its next message. It can be used in one of three modes: displayed,

hidden or absent. In the hidden mode, put an alternate input method, such as a normal input type="text" in your

document and call the sendMessage(message) method with JavaScript.

When the MessageBox applet is absent, it is because the current user should only be able to monitor the chat event

but not be able to participate in it. If the MessageBox applet is absent, do not forget to adjust the Base applet’s

dependencies accordingly.

// Used if you need to send a message to the channel

// with JavaScript.
function sendMessage(m) {

 var app = document.getElementById("chatMessageBox");

 if (app) {
 if (m=="") app.sendMessage();

 else app.sendMessage(m);

 }
}

var _p = new Array();
_p[_p.length] = new Array("name", "chatMessageBox");

_p[_p.length] = new Array("dependencies","chatBase");

_p[_p.length] = new Array("ircChannels","<%=ChannelName%>");
<% if ((!IsModerator) && (IsModerated) && (!IsVipUser)) { %>

_p[_p.length] = new Array("sendToIrcChannel", "<%=ModeratorChannelName%>");

<%
}

%>

_p[_p.length] = new Array("Caption", "MessageBox");
_p[_p.length] = new Array("backgroundColor", "FFFFFF");

_p[_p.length] = new Array("base", "chatBase");

_p[_p.length] = new Array("moduletype", "MessageBox");
_p[_p.length] = new Array("maxMessageLength", "400");

makeApplet("IrcChat.jar", "http://chat-server-host/", "ChatMessageBox.class",
"chatMessageBox", 1, 1, _p);

46 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2.12 Club

Clubs are mini-communities within a community. A club has a separate member list, club news, forums and image

galleries etc. Clubs can be treated in different ways; they can be hidden, which means that only people who know about

them can become members. It can have different security states: closed or open. Closed clubs require approval from its

owner before allowing more members, while open clubs are free to join by anyone. Clubs can also be created and wait

for subsequent approval from an administrator, or the community can allow for free creation of clubs.

2.12.1 Adding a Club

Adding a club through the API is useful when users want to create their own clubs based on topics.

Import Necessary Namespaces

First import the necessary namespaces that will be used to add a club. The namespaces StarCommunity.Modules.Club,

StarCommunity.Cre.Modules.Security and StarCommunity.Core are described by clicking on their respective names.

Make sure you add the assemblies as references, as mentioned in section 1.1.1.

Creating the Club

In this example we start by getting the User object instances of the users we want as the creator and owner of the club.

Secondly we have decided to set this club as approved, visible and with security status set to SecurityStatus.Closed.

Finally we add the club to database by calling the AddClub method. The new Club object instance with its ID property

set is returned.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;
using StarCommunity.Modules.Club;

//Get the creator by id

IUser creator = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(1234);

//Get the owner by id

IUser owner = (IUser)StarCommunitySystem.
CurrentContext.DefaultSecurity.GetUser(12345);

bool isApproved = false;
bool isHidden = false;

Club club = new Club("Club name",
"Club description", isApproved,

null, null, SecurityStatus.Closed,

"Reason for creation", creator, owner,
null, isHidden);

club = ClubHandler.AddClub(club);

Tutorials | 47

© EPiServer AB

2.12.2 Removing a Club

Removing a club can be done either temporarily or permanently. As with users, a permanent removal means there is no

way of undoing the action, while a temporary removal only results in the club not appearing in listings and search

queries.

Importing Necessary Namespaces

First import the necessary namespaces that will be used to remove a club. The namespace

StarCommunity.Modules.Club is described by clicking on its name. Make sure you add the assembly as a reference,

mentioned in section 1.1.1.

Removing a Club

To temporarily remove a club get the Club object instance id, and send it as a parameter to the RemoveClub method.

If we would now try to get the Club object instance with the GetClub method, the club’s Removed property would be

set to true.

Permanently Removing a Club

To permanently remove a club we start off in the same way as we did with temporary removal. The difference is when

we call the RemoveClub method, since this time we pass the permanent parameter as true. If you try to retrieve the

Club object instance now, using the GetClub method, it will return null since the club no longer exists in the database.

2.12.3 Adding Club Members

Becoming a member of a club is necessary if you want to share its information. A club owner does not have to go

through the process of becoming a member after creating a club, since owners are automatically added to the

member’s list.

This article will show you, the developer, how to add a user as a member of a club and what the different results will be

if the club is closed or open.

using StarCommunity.Modules.Club;

//Get the club by id
Club club = ClubHandler.GetClub(1234);

//Temporarily remove the club
ClubHandler.RemoveClub(club);

//Get the club by id
Club club = ClubHandler.GetClub(1234);

//Permanently remove the club
ClubHandler.RemoveClub(club, true);

48 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

Import Necessary Namespaces

First import the necessary namespaces that will be used to add a club member. The namespaces

StarCommunity.Modules.Club, StarCommunity.Core.Modules.Security and StarCommunity.Core are described by

clicking on their respective names. Make sure you add the assemblies as a reference, mentioned in section 1.1.1.

Adding a Member

To add a member we first get the club we want to become member of by its id, and then the user that is to become a

member by its id.

We create a Membership object instance and supply the club and user as arguments to its constructor. When we

create the Membership object instance, the membership will be set to MembershipType.Applied if the club is set to

SecurityStatus.Closed. This means that if we use this default behavior, the membership will have to be applied by an

administrator or the club owner before it is valid. Finally we call the AddMembership method to store the membership

in the database.

2.12.4 Adding Club Ads

Club ads are used to promote a club in a community, either with images or text. In this article we explain how to create

a new Club Ad with an ImageGallery Image attached to it.

Import Necessary Namespaces

First import the necessary namespaces that will be used to add a Club Ad. The namespaces

StarCommunity.Modules.Club, StarCommunity.Core.Modules.Security and StarCommunity.Core are described by

clicking on their respective names. Make sure you add the assemblies as a reference, mentioned in section 1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;
using StarCommunity.Modules.Club;

//Get the club by id
Club club = ClubHandler.GetClub(1234);

//Get the new member by id
IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(1234);

Membership m = new Membership(user, club,

"Reason why I want to join");

// Add the membership to database

m = ClubHandler.AddMembership(m);

using StarCommunity.Core;

using StarCommunity.Core.Mmodules.Security;

using StarCommunity.Modules.Club;

Tutorials | 49

© EPiServer AB

Adding an Ad with an Image

To create a Club Ad from an image located at e.g. C:\Image.jpg requires the use of the ImageGallery Module. Now we

get the club we are making an ad for by its id, then we create an Ad object instance. We have decided to set the ad as

approved from the start; this means that it does not need approval from an administrator. Finally we add the Ad object

instance to the database by calling the AddAd method.

System.IO.FileStream fs =
new System.IO.FileStream(@"C:\Image.jpg",

System.IO.FileMode.Open);

using(fs)

{

//Get the image uploader by id
IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(1234);

 StarCommunity.Modules.ImageGallery.Image image =

 new StarCommunity.Modules.

ImageGallery.Image("Name", "Description", fs,
uploader);

//Get the club by id
Club club = ClubHandler.GetClub(1234);

bool isApproved = true;

 Ad ad = new Ad(club, "Test header",

"Test body", isApproved, image);

 ad = ClubHandler.AddAd(ad);

}

50 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2.13 ConnectionLink

ConnectionLink uses data from StarCommunity.Modules.Contact and performs Breadth First Search (BFS) algorithms to

decide the shortest path between 2 users.

2.13.1 Getting the Shortest Path

Use the ConnectionLinkHandler to get aUserCollection containing userA and the users representing the shortest path

to userB based on contact relations.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage the connection link and users. The namespace

StarCommunity.Modules.ConnectionLink, StarCommunity.Core and StarCommunity.Core.Modules.Security is described

by clicking on their names. Make sure you add the assemblies as a reference, mentioned in Setting up Visual Studio.

Get the two users, userA and userB, to compare.

Get the UserCollection with the users representing the shortest path from userA to userB

UserCollection connections =

ConnectionLinklHandler.GetShortestPath(userA, userB);

2.14 Contact

Management of contacts is done through the ContactHandler class in the StarCommunity.Contact namespace. The

connection between the user and its contact relations is done via the ContactContainer class. However, a

ContactContainer is created automatically for a user upon user creation, for each site in the system, and it is normally

not done by the developer.

2.14.1 Adding a Contact Relation

To add a ContactRelation, first create an instance of the ContactRelation class (there are several constructors available).

The ContactRelation constructor needs the ContactContainer for the user that is adding the contact relation (userA),

the user to be added to the contact list (userB) and a ContactType. The contact type can be either

ContactType.Request or ContactType.Contact.ContactType.Request is used when the contact relation must be

approved by userB and ContactType.Contact is used when the contact relation should come into effect immediately.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.ConnectionLink;

//Get the userA and userB by id

IUser userA =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(1234);

IUser userB =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(1235);

Tutorials | 51

© EPiServer AB

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage contacts and users. The namespace

StarCommunity.Modules.Contact, StarCommunity.Modules.MyPage,StarCommunity.Core and

StarCommunity.Core.Modules.Security is described by clicking on their names. Make sure you add the assemblies as a

reference, mentioned in section 1.1.1.

First we must get the ContactContainer for userA. This can be done by using the ContactHandler, but in most cases it

is accessed by the Contact property in the MyPage class.

// Get the userA by id

IUser userA =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(1234);

// Get the contact container for userA via my page

MyPage myPageA = MyPageHandler.GetMyPage(userA);
ContactContainer contactContainerA = myPageA.Contact;

The contactContainerA belonging to userA can now be used for creating a ContactRelation to userB.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;
using StarCommunity.Modules.Contact;

using StarCommunity.modules.MyPage;

52 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

//Get the userB by id
IUser userB =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(1235);

ContactRelation contactRelation =

new ContactRelation(contactContainerA, userB, ContactType.Contact);

At this point the new ContactRelation object exists only in memory, to commit it to the database and get the unique ID

property set, we need to add it using the ContactHandler.

//Commit the contact relation to database

contactRelation =

ContactHandler.AddContactRelation(contactRelation);

Note that the AddContactRelation method always returns the committed object with the unique ID property set.

Depending on the Configuration File, a corresponding contact relation of ContactType.Contact from userB to userA

may automatically have been created. This is the most common way to create contact relations where no contact

approval is needed.

2.14.2 Removing a Contact Relation

First we need to get the ContactRelation object to be removed. This is done via the ContactContainer for the

removing user (userA). The ContactContainer can be accessed via the ContactHandler but is most often accessed by

the Contact property in the MyPage class.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage contacts and users. The namespaces

StarCommunity.Modules.Contact, StarCommunity.Core and StarCommunity.Core.Modules.Security are described by

clicking on their names. Make sure you add the assemblies as a reference, as mentioned in Setting up Visual Studio.

using StarCommunity.Core;
using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Contact;

using StarCommunity.Modules.MyPage;

Tutorials | 53

© EPiServer AB

Get the contact relation between userA and userB.

// Get the userA by id
IUser userA =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(1234);

MyPage myPageA = MyPageHandler.GetMyPage(userA);

ContactContainer contactContainerA = myPageA.Contact;

// Get the userB by id

IUser userB =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(1235);

// Get the contact relation for userA to userB

ContactRelation contactRelation =
contactContainerA.GetContactRelation(userB);

Now we have the ContactRelation to be removed and we use the ContactHandler to remove it.

ContactHandler.RemoveContactRelation(contactRelation);

Depending on Configuration File the corresponding ContactRelation from userB to userA may automatically have been

removed if the ContactType is set to ContactType.Contact.

2.14.3 Approving a Contact Relation

Approving a ContactRelation code is basically about setting the ContactType.Request to ContactType.Contact. The

following example shows how userA is requesting a contact relation to userB, which userB approves, resulting in that a

ContactRelation of ContactType.Contact is created from userA to userB and consequently from userB to userA.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage contacts and users. The namespace

StarCommunity.Modules.Contact, StarCommunity.Core and StarCommunity.Core.Modules.Security is described by

clicking on their names. Make sure you add the assemblies as a reference, mentioned in Setting up Visual Studio.

First create a ContactRelation from userA to userB of ContactType.Request. This is done by getting the

ContactContainercode for userA, usually accessed from the

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Contact;
using StarCommunity.Modules.MyPage;

54 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

MyPage class.

Then create a ContactRelation from userA to userB of ContactType.Request and use the ContactHandler to add it and

thereby commiting it to the database.

// Get userB by id
IUser userB =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(1235);

// Create a contact relation between userA and userB of type Request

ContactRelation contactRelationA =

new ContactRelation(contactContainer, userB, ContactType.Request);

// Commit the contact relation to database

contactRelation =
ContactHandler.AddContactRelation(contactRelation);

userA now has a one-way relation of type ContactType.Request to userB. To create a two-way relation of

ContactType.Contact, userB needs to approve the request. This is done by updating the ContactRelationcode to be of

ContactType.Contact. First we need to get the ContactRelation that should be updateed. This is done via the

ContactHandler class:

Then we change the ContactType property from ContactType.Request to ContactType.Contact.

The changes to the object are now only represented in memory. We need to update the object via the

ContactHandler class to commit the object state to the database.

ContactHandler.UpdateContactRelation(contactRelation);

Optionally, but commonly, you can now add a relation from userB to userA to get a two-way relation between userA

and userB. First we get the ContactContainer for userB via the userB MyPage:

// Get userA by id

IUser userA =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(1234);

// Get userA contact container via my page

MyPage myPageA = MyPageHandler.GetMyPage(userA);
ContactContainer contactContainer = myPageA.Contact;

ContactRelation contactRelation =

ContactHandler.GetContactRelation(userA, userB);

contactRelation.ContactType = ContactType.Contact;

MyPage myPageB = MyPageHandler.GetMyPage(userB);

ContactContainer contactContainerB = myPageB.Contact;

Tutorials | 55

© EPiServer AB

Then create a new ContactRelation to userA and add it to commit the object to the database.

The AddContactRelation method returns the committed object with the unique ID property set.

2.14.4 ContactRelationCollections and Perspectives.

To get a ContactRelationCollection we call the GetContactRelations method in the ContactContainer supplying the

ContactType we are interested in. Since a contact relation request can be either directed towards the current user or a

request from the current user towards another user, we need to introduce the enum Perspective. Perspective values

can be either Perspective.ToMe or Perspective.FromMe. The following samples show the use of perspectives.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage contacts and users. The namespaces

StarCommunity.Modules.Contact, StarCommunity.Core and StarCommunity.Core.Modules.Security are described by

clicking on their names. Make sure you add the assemblies as a reference, mentioned in Setting up Visual Studio.

First we get the userAContactContainer via the MyPage class.

Get all contact relations of ContactType.Contact belonging to userA’s ContactContainer.

We are getting page 1 with 20 items per page and sorting on alias ascending.

Get all pending contact relation requests from other users to userA. Note that we use Perspective.ToMe.

ContactRelation contactRelation =
new ContactRelation(contactContainerB, userA, ContactType.Contact);

contactRelation =

ContactHandler.AddContactRelation(contactRelation);

using StarCommunity.Core;
using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Contact;

using StarCommunity.Modules.MyPage;

// Get userA by id

IUser userA =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(1234);

// Get userA contact container via my page

MyPage myPageA = MyPageHandler.GetMyPage(userA);
ContactContainer contactContainerA = myPageA.Contact;

int totalHits = 0 ;

ContactRelationCollection crCollection =

contactContainerA.GetContacts(ContactType.Contact,
Perspective.FromMe, 1, 20, out totalHits,

new ContactRelationSortOrder(ContactRelationSortField.ContactAlias,

SortDirection.Ascending));

56 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

Get all pending requests made by userA to other users. The only thing we need to change is Perspective.FromMe.

int totalHits = 0 ;

ContactRelationCollection crCollection =
contactContainerA.GetContacts(ContactType.Request,

Perspective.FromMe, 1, 20, out totalHits,

new ContactRelationSortOrder (ContactRelationSortField.ContactAlias,
SortDirection.Ascending));

int totalHits = 0 ;

ContactRelationCollection crCollection =

contactContainerA.GetContacts(ContactType.Request,
Perspective.ToMe, 1, 20, out totalHits,

new ContactRelationSortOrder (ContactRelationSortField.ContactAlias,

SortDirection.Ascending));

Tutorials | 57

© EPiServer AB

2.14.5 Configuration File

Element name Type Description

ReverseAdd Boolean If set to true, when a ContactRelation of type

Contact from userA to userB is added, a

corresponding ContactRelation from userB to userA

will be added automatically. Useful when your

community doesn’t use approval steps for adding

contact relations.

ReverseRemove Boolean If set to true, when a ContactRelation of type

Contact from userA to userB is removed, the

corresponding ContactRelation from userB to userA

will be removed automatically.

58 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2.15 Contest

Contest management is done through the ContestHandler class in the StarCommunity.Modules.Contest namespace.

Contests are typically created and managed by an administrator in the administration interface and not programmatically

by a developer. In this tutorial only actions you typically need to do front-end are shown. See the EPiServer Community

User Manual for further information on how to create and manage contests.

2.15.1 Get Contests

We use the ContestHandler class to return a ContestCollection with all existing contests. In this case we get page 1

with 20 items per page, sorted on creation date ascending.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage contests. The namespace

StarCommunity.Modules.Contest is described by clicking on its name. Make sure you add the assemblies as a reference,

mentioned in section 1.1.1.

Get the contest collection via the ContestHandler:

2.15.2 Get Contest Questions

Contest questions can be of two different types that all inherit the Question base class. The types are

AlternativeQuestion and TextQuestion. The AlternativeQuestion is in turned to SingleAlternativeQuestion and

MultipleAlternativeQuestion classes.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage contests. The namespace

StarCommunity.Modules.Contest is described by clicking on its name. Make sure you add the assemblies as a reference,

mentioned in section 1.1.1.

To the contest questions we first need the contest. This is done by calling the GetContest method in the

ContestHandler class.

using StarCommunity.Modules.Contest;

int totalHits = 0 ;

ContestCollection cCollection =

ContestHandler.GetContests(1, 20, out totalHits,
new ContestSortOrder(ContestSortField.Created, SortDirection.Ascending));

using StarCommunity.Modules.Contest;

Contest contest = ContestHandler.GetContest(1234);

Tutorials | 59

© EPiServer AB

Then we get the contest questions collection via the Questions property in the Contest class.

If the Questioncode is of type AlternativeQuestion you typically want to get the alternatives. This is done via the

Alternatives property of the AlternativeQuestion class. Note that you need to examine the Questioncode object in the

QuestionCollection to decide whether it is an AlternativeQuestion before accessing the Alternatives property. To get

the Question object we use the ContestHandler class.

Note: The question object is often accessible during ItemDataBound for repeaters and data lists in a user control where

a QuestionCollection typically acts as the datasource. The GetQuestion method is therefore seldom used in this

context.

2.15.3 Add Contest Submission

In the following sample we assume that we have a question of type SingleAlternativeQuestion. To submit a contest

submission, we first need to populate an AnswerCollection.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage contests. The namespace

StarCommunity.Modules.Contest is described by clicking on its name. Make sure you add the assemblies as a reference,

mentioned in section 1.1.1.

First we need to get the contests for which we want to submit our answers.

We initialize the answer collection.

We get an alternative selected by the user via the ContestHandler class.

QuestionCollection qCollection = contest.Questions;

Question question = cHandler.GetQuestion(1234);
if(question is AlternativeQuestion)

{

AlternativeCollection altCollection =
((AlternativeQuestion)question).Alternatives;

}

using StarCommunity.Modules.Contest;

Contest contest = ContestHandler.GetContest(1234);

AnswerCollection answers = new AnswerCollection();

Alternative alternative = cHandler.GetAlternative(1234);

60 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

Then we get SingleAlternativeAnswer from the selected alternative and add it to AnswerCollectionAnswer.

Create a contest submission for the user.

At this point the submission only exists in memory. To commit it to the database we use the AddSubmission method in

the ContestHandler class.

Note: The contest system doesn’t allow for more than one submission per logged in user and will throw an exception if

this occurs. You can check for duplicate submissions by:

2.15.4 Get winners

Winners are typically selected by an administrator in the administration interface. However, you often want to get the

winners for a contest for displaying them on your community.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage contests. The namespace

StarCommunity.Modules.Contest is described by clicking on its name. Make sure you add the assemblies as a reference,

mentioned in section 1.1.1.

First we need to get the Contest. This is done via the ContestHandler class.

Contest contest = ContestHandler.GetContest(1234);

SingleAlternativeAnswer saa =
SingleAlternativeAnswer(alternative);

answers.Add(saa);

Submissin submission =

new Submission(contest, answers, user, "John", "Doe", "Address", "Zip",
"City", "Email");

ContestHandler.AddSubmission(submission);

IUser user =

 (StarCommunity.Core.Modules.Security.IUser)StarCommunitySystem.
 CurrentContext.DefaultSecurity.CurrentUser;

bool submitted =
 ContestHandler.GetSubmission(user, contest) != null;

using StarCommunity.Modules.Contest;

Tutorials | 61

© EPiServer AB

To get a UserCollection of winners for the contest, we access the Winners property in the Contest class.

UserCollection winners = contest.Winners;

62 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2.16 DirectMessage

Message management is done through the DirectMessageHandler class in the StarCommunity.Modules.DirectMessage

namespace. Three root folders for each site are created automatically for each user upon user creation: Inbox, Sent and

Draft. The root folders are accessible via the DirectMessageContainer class, which in turn is often accessed via the

MyPage class.

2.16.1 Send a Message

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage messages and users. The namespace

StarCommunity.Modules.DirectMessage, StarCommunity.Core and StarCommunity.Core.Modules.Security is described

by clicking on their names. Make sure you add the assemblies as a reference, mentioned in Setting up Visual Studio.

We start by creating a new Message providing the user who is sending the message.

Create recipients and add them to the message recipients list via the Recipients property of the Message. To create a

MessageReceiver we need a user and can optionally specify a folder where we should put the message. In this case we

put it in the recipient system folder inbox. This folder is default if no folder is supplied. In this example we get the inbox

via the recipients MyPage

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;
using StarCommunity.Modules.DirectMessage;

using StarCommunity.Modules.MyPage;

//Get the sender user by id

IUser senderUser = (IUser)StarCommunitySystem.CurrentContext.

 DefaultSecurity.GetUser(1234);

//Create a new message

Message message =
 new Message(“message subject”, “message body”,

 senderUser, null);

//Get the recipient user by id

IUser recipientUser = (IUser)StarCommunitySystem.CurrentContext.

 DefaultSecurity.GetUser(1235);

MyPage recipientMyPage = MyPageHandler.GetMyPage(recipientUser);

message.Recipients.Add(new MessageRecipient(MyPageUser,
recipientMyPage.DirectMessage.

GetSystemFolder(SystemFolderType.Inbox)));

Tutorials | 63

© EPiServer AB

Now we are ready to send the message. This is done using the DirectMessageHandler.

Now the message is in the receiver’s Inbox folder. If you pass the second parameter “copyToFolder” you can have a

copy of the message delivered to for example the sender’s Sent-folder.

2.16.2 Removing Messages

If you have opened for the possibility to have more than one MessageRecipient in your community, you cannot simply

remove the entire message since all receivers “share” the same message. Instead you remove the message from the

folderin question. When the message is removed from all folders, the actual Message is removed automatically. In the

following sample we send a message from senderUser to two receivers (recipient1 and recipient2) then remove the

message from their Inboxes.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage messages and users. The namespace

StarCommunity.Modules.DirectMessage, StarCommunity.Core and StarCommunity.Core.Modules.Security is described

by clicking on their names. Make sure you add the assemblies as a reference, mentioned in Setting up Visual Studio.

First we create the message, add receivers and send it:

DirectMeessageHandler.SendMessage(message);

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.DirectMessage;
using StarCommunity.Modules.MyPage;

//Get the sender user by id

IUser senderUser = (IUser)StarCommunitySystem.CurrentContext.

 DefaultSecurity.GetUser(1234);

//Get 2 recipients users by id

IUser recipientUser1 =
(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(1234);

IUser recipientUser2 =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(1235);

//Create and send the message to the 2 recipients

Message message = new Message("Test subject", "test body",
 senderUser);

MessageRecipient recipient1 = new MessageRecipient

(recipientUser1);
MessageReceiver recipient2 = new MessageRecipient

(recipientUser2);

message.Recipients.Add(recipient1);

message.Recipients.Add(recipient2);

DirectMessageHandler.SendMessage(message);

64 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

recipient1 now removes the message from his/hers Inbox folder. First we need to get the folder. We get this via the

recipient MyPage.

We call the RemoveMessage method in the DirectMessageHandler class.

Note that the actual message still exists since receiver2 still have it in its Inbox. If receiver2 also removes the message

and senderUser removes it from his/hercopy folder, the message itself will be automatically removed.

If you want to remove the message from all folders, you can use the RemoveMessageoverload that only takes a

Message as an argument.

2.16.3 Listing Messages in Folders

All messages are located in one of the user's three system folders: Inbox, Sent and Draft (or their subfolders). The

MessageCollections are therefore accessible via the Folder class. The following sample shows how to retrieve a

MessageCollection from the root folder Inbox.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage messages and users. The namespace

StarCommunity.Modules.DirectMessage, StarCommunity.Core and StarCommunity.Core.Modules.Security is described

by clicking on their names. Make sure you add the assemblies as a reference, mentioned in Setting up Visual Studio.

First we need the DirectMessageContainer for the user who’s Inbox we want to list. We access it via the users MyPage.

The root folders are accessible via the DirectMessageContainer. In this case we want the Inbox folder:

MyPage recipient1MyPage = MyPageHandler.GetMyPage(recipientUser1);

SystemFolder inbox1 =
 recipientMyPage1.DirectMessage.

 GetSystemFolder(SystemFolderType.Inbox)

DirectMessageHandler.RemoveMessage(message, inbox1);

DirectMessageHandler.RemoveMessage(message);

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.DirectMessage;
using StarCommunity.Modules.MyPage;

//Get the user by id

IUser user =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(1234);

//Get the direct message container via user my page

MyPage myPage = MyPageHandler.GetMyPage(user);
DirectMessageContainer dmc = myPage.DirectMessage;

Tutorials | 65

© EPiServer AB

Now we call the GetMessages method to get the MessageCollection. In this case we get page 1 with 20 items per page,

sorted by creation date ascending.

2.16.4 Flag a Message as read

When a receiver is reading the message you often want to visualize that the message has been read. This is done by the

updating the MessageRecipientHasRead To get the message recipient we need to specify a message and a user.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage messages and users. The namespace

StarCommunity.Modules.DirectMessage, StarCommunity.Core and StarCommunity.Core.Modules.Security is described

by clicking on their names. Make sure you add the assemblies as a reference, mentioned in Setting up Visual Studio.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.DirectMessage;

The message is now flagged as read by the recipientUserand the read date has been automatically set and can be

accessed via the ReadDate property in the MessageRecipient class

Folder inbox = dmc.GetSystemFolder(SystemFolderType.Inbox)

MessageCollection messages = inbox.GetMessages(1, 20,

new DirectMessageSortOrder (DirectMessageSortField.DateCreated,

SortDirection.Ascending));

//Get the message

Message message = (Message)DirectMessageHandler.GetMessage(1234);

//Get the recipient user by id

IUser recipientUser =
(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(1234);

//Get the message recipient
MessageRecipient recipient =

 (MessageRecipient)DirectMessageHandler.GetRecipient(message,

recipientUser).Clone();

//Update recipient and commit to database

recipient.HasRead = true;
DirectMessageHandler.UpdateRecipient(recipient);

66 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2.17 Document Archive

The document archive is used for file sharing purposes between community members. A document archive is

automatically created on MyPage and Club creation and accessible via the DocumentArchive property. Document

archives can also be created as stand-alone archives.

2.17.1 Add a Document Archive

Document archives automatically exist for MyPage and Club. However, if you need a stand-alone archive you simply

add a new document archive, this is done via the DocumentArchiveHandler.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage document archives. The namespace

StarCommunity.Modules.DocumentArchive is described by clicking on the name. Make sure you add the assemblies as a

reference, mentioned in Setting up Visual Studio.

Create a newDocumentArchive:

At this point, the DocumentArchive da only exists in memory. To commit it to database you call the

AddDocumentArchive method in the DocumentArchiveHandler class.

da = DocumentArchiveHandler.AddDocumentArchive(da);

Note that the AddDocumentArchive method returns the committed object with the unique ID property set.

2.17.2 Remove a Document Archive

Stand-alone archives and all of their content can be removed. This is done via the DocumentArchiveHandler

RemoveDocumentArchive method. First we need the document archive to be removed.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage the document archive. The namespace

StarCommunity.Modules.DocumentArchive is described by clicking on its name. Make sure you add the assemblies as a

reference, mentioned in section 1.1.1.

using StarCommunity.Modules.DocumentArchive;

We use the GetDocumentArchive method in the DocumentArchiveHandler to get the archive to be removed.

da = DocumentArchiveHandler.GetDocumentArchive(1234);

using StarCommunity.Modules.DocumentArchive;

DocumentArchive da = new DocumentArchive("Name", "Description");

Tutorials | 67

© EPiServer AB

Then we remove it:

DocumentArchiveHandler.RemoveDocumentArchive(da);

2.17.3 Add a Document

To add a document to a DocumentArchive we need a document. The document is constructed with a

DocumentArchive, a User and a file Stream.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage document archives and users. The namespace

StarCommunity.Modules.DocumentArchive, StarCommunity.Core and StarCommunity.Core.Modules.Security is

described by clicking on their names. We also need to import System.IO to use the Stream class. Make sure you add

the assemblies as a reference, mentioned in Setting up Visual Studio.

First we get the document archive in which we want to add our document. In this case it is the document archive that

has been automatically created for us upon MyPage creation.

Now we can create the document by providing the user that is uploading the file the document archive and a file

stream. In this case the archive owner is the same user as the uploader.

Now we add the Document doc using the DocumentArchiveHandler and at the same time committ it to database,

until now it has only been represented in memory.

doc now contains the committed object with the unique ID property set.

using System.IO;

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;
using StarCommunity.Modules.DocumentArchive;

using StarCommunity.Modules.MyPage;

//Get the user by id

IUser user =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(1234);

//Get the document archive for user via my page

MyPage myPage = MyPageHandler.GetMyPage(user);
DocumentArchive da = myPage.DocumentArchive;

//Get the file stream

FileStream stream = new FileStream("foo.doc", FileMode.Open);

//Create the document

Document doc =

new Document("foo.doc", "foo description", da, user, stream);

doc = DocumentArchiveHandler.AddDocument(doc);

68 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2.17.4 Update a Document

To update an existing document we first need the document. The document can be retrieved via the

DocumentArchiveHandler.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage the document archive. The namespace

StarCommunity.Modules.DocumentArchive is described by clicking on its name. Make sure you add the assemblies as a

reference, mentioned in Setting up Visual Studio.

Retrieve the document archive using the GetDocument method in the DocumentArchiveHandler class.

Now we update the doc object, changing its description:

Note that the object is now only modified in memory. To commit the changes to database, we use the

UpdateDocument method in the DocumentArchiveHandler class.

2.17.5 Remove a Document

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage the document archive. The namespace

StarCommunity.Modules.DocumentArchive is described by clicking on its name. Make sure you add the assemblies as a

reference, mentioned in Setting up Visual Studio.

Before we can remove a document from a document archive, we need to get the document to remove. This is done

via the DocumentArchiveHandler.

doc = DocumentArchiveHandler.GetDocument(1234);

We can then remove it.

DocumentArchiveHandler.RemoveDocument(doc);

using StarCommunity.Modules.DocumentArchive;

doc = (Document)DocumentArchiveHandler.GetDocument(1234).Clone();

doc.Description = "An updated description";

DocumentArchiveHandler.UpdateDocument(doc);

using StarCommunity.Modules.DocumentArchive;

Tutorials | 69

© EPiServer AB

2.17.6 Configuration File

Element name Type Description

PhysicalPath String The physical path to where document archive files

should be stored.

VirtualPath String The virtual path to where document archive files

should be stored.

70 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2.18 Expert

EPiServer Community Expert module provides functionality enabling users to ask questions that can be answered by the

domain experts. Experts do not have to be community members to provide answers to the questions.

2.18.1 Add an Expert

To fully use the Expert functionality, at least one Expert has to be added to the community to answer the questions. In

this section, we will focus on adding an Expert that is not a community member – its only job in the community is to

answer questions.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to add an expert. The namespaces StarSuite.Core, and

StarCommunity.Modules.Expert are described by clicking on their respective names. Make sure you add the assembly as

a reference, mentioned in 1.1.1.

Create a New Expert

Creating a new expert is a simple call to the Expert class constructor. The Expert class constructor allows for providing

several properties describing an expert: first and last name, e-mail address, general description, qualifications, home page,

phone, status and assigned site within the community.

When the Expert object has been created, it has to be committed to database using the AddExpert method of the

ExpertHandler class object.

using StarSuite.Core;

using StarCommunity.Modules.Expert;

// Get site that the expert will be assigned to

StarSuite.Core.Modules.ISite site = StarSuite.Core.SiteHandler.GetSite(1);

// create a new Expert

ExpertBase expert = new Expert("John", "Doe", "john@doe.com",
"Description", "Qualifications", "555-55-55",

 "http://johndoe.expert.com", ExpertStatus.Active, site);

// save expert in the database

expert = ExpertHandler.AddExpert(expert);

Tutorials | 71

© EPiServer AB

2.18.2 Add a Member Expert

An Expert does not have to be completely independent – a community member can be an expert too. The only

difference is that when creating a member expert, there is no need to provide first name, last name and e-mail of an

expert as these values are already known.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to add an expert. The namespacesStarSuite.Core,

StarCommunity.Core, StarCommunity.Core.Modules.Security and StarCommunity.Modules.Expert are described by

clicking on their respective names. Make sure you add the assembly as a reference, mentioned in section 1.1.1.

Create a New Member Expert

Creating a new member expert is a simple call to the ExpertMember class constructor. The ExpertMember class

constructor allows for providing several properties describing a member expert: the user that is to become an expert,

general description, qualifications, home page, phone, status and assigned site.

When the ExpertMember object has been created, it has to be committed in the database using the AddExpert

method of the ExpertHandler class object.

With ExpertMember it has to be remembered that GivenName, SurName and EMail properties of the class are read

only. Each of these properties has a setter, but it throws NotSupportedException, as the values are taken from the

injected User instance. To change them, change the ExpertMember.User properties.

using StarSuite.Core.Modules;

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;
using StarCommunity.Modules.Expert;

// Get site that the expert will be assigned to
StarSuite.Core.Modules.ISite site = StarSuite.Core.SiteHandler.GetSite(1);

// Get current user to become an expert
IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.CurrentUser;

// create a new Expert

ExpertBase expert = new ExpertMember(user,

"Description", "Qualifications", "555-55-55",
 "http://johndoe.expert.com", ExpertStatus.Active, site);

// save expert in the database
expert = ExpertHandler.AddExpert(expert);

72 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2.18.3 Remove an Expert

When the existing Expert or ExpertMember does not want to or cannot be an expert any more, he can be removed

from the EPiServer Community. This section briefly explains how to do that.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to remove an expert. The namespace

StarCommunity.Modules.Expert is described by clicking on its name. Make sure you add the assembly as a reference,

mentioned in section 1.1.1.

Remove an Expert

Removing an expert is a very simple operation – all that is needed is to have an Expert or ExpertMember object, and

call the RemoveExpert method of the ExpertHandler class. Removing an expert means that he will no longer be able to

login, view or answer questions etc. If the expert is ExpertMember, the underlying user is not deleted – he is simply no

longer an expert within the community, but is still a valid user of the community.

2.18.4 See if a User is an Expert

It is often needed in the application to display different user interface depending on whether the currently logged in user

has some capabilities or not. The same applies to the Expert functionality – when a user is an expert, there can be a

need to display questions assigned to him, or enable user interface features to answer questions. This section will show

how to obtain information if a user is an Expert.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to check if a user is an expert. The namespaces

StarCommunity.Core, StarCommunity.Core.Modules.Security and StarCommunity.Modules.Expert are described by

clicking on respective names. Make sure you add the assembly as a reference, mentioned in section 1.1.1.

using StarCommunity.Modules.Expert;

// Get an expert to remove
ExpertBase expert = ExpertHandler.GetExpert(234);

// remove the expert
ExpertHandler.RemoveExpert(expert);

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Expert;

Tutorials | 73

© EPiServer AB

Check if a User is an Expert

The simplest way to check if a User is an Expert is to get an Expert based on the user we want to check using the

GetExpert method of the ExpertHandler. If the function returns an ExpertMember object, it means that the user is an

expert; if it returns null, the user is not an expert, as no expert with that unique user id exists in the database.

2.18.5 Add a Question

The purpose of experts existence in the community is simply to answer questions. However, before they can do so, a

question has to be asked. In this section, we will show how a user can add a question to an Expert.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to ask a question by a user. The namespaces

StarCommunity.Core, StarCommunity.Core.Modules.Security and StarCommunity.Modules.Expert are described by

clicking on their respective names. Make sure you add the assembly as a reference, mentioned in section 1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules;
using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Expert;

Add a Question

To add a question, first a Questioncode object has to be created. To create it, we need to provide question header,

question body, the status of the question and the author of the question. Question header and body are strings that

define the question; the question status can be one of: New, Assigned, Published, Revoked or Rejected. For new

questions, it is best to set the status to New. Question author can be one of: UserAuthor (community User is the

author of the question), AnonymousAuthor (community User is the author, but does not want to be identified by other

community members) and GuestAuthor (has no underlying user).

// Get the user to check by id

IUser user = (IUser)StarCommunitySystem.
CurrentContext.DefaultSecurity.GetUser(1234);

bool isExpert = false;

// Try to retrieve an expert

ExpertBase expert = ExpertHandler.GetExpert(user);

// if returned expert object is not null, the user is an expert

if (expert != null)
 isExpert = true;

74 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

After the Question object is created, the question can be saved in the database using theAddQuestion method of the

ExpertHandler class.

2.18.6 Assign a Question

Before an expert can answer a question, it has to be assigned to him. When the question has been assigned, you can

use one of several methods in the ExpertHandler class to retrive the question based on its assignments, answered/not

answered status etc.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to ask a question by a user. The namespace

StarCommunity.Modules.Expert is described by clicking on its name. Make sure you add the assembly as a reference,

mentioned in section 1.1.1.

// Get the user to create an author

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.CurrentUser;

// Create the author of the question.

// If the current user is not logged in user (user is null),
// the created author will be a GuestAuthor. Otherwise,

// a UserAuthor will be created.

IAuthor author = null;
if (null == user)

 author = new GuestAuthor("Guest");

else
 author = new UserAuthor(user);

// create the question
Question question = new Question("Header", "Body",

 QuestionStatus.New, author);

// Add question to the database – returned Question

// object has ID property set

question = ExpertHandler.AddQuestion(question);

using StarCommunity.Modules.Expert;

Tutorials | 75

© EPiServer AB

Assign a Question

To assign a question, an AssignedQuestion object has to be created. Objects of this class bind questions to experts, and

allow for assigning a forum topic that relates to the question.

2.18.7 Answer a Question

When a question has been assigned to an expert, it can be answered. If the Expert module have the AutoPublish

property set to true, the question status is automatically changed to Published if it was in New or Assigned state. Below

you can find a short example of how to add an answer to a question.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to answer a question. The namespace

StarCommunity.Modules.Expert is described by clicking on its name. Make sure you add the assembly as a reference,

mentioned in section 1.1.1.

Answer a Question

To answer a question, an Answer object has to be created. Answer object has a reference to the AssignedQuestion

object, therefore both the question and the expert answering the question are always known. When the Answer object

has been created, it has to be committed to database using the AddAnswer method of the ExpertHandler class.

// Get a question from database
Question question = ExpertHandler.GetQuestion(322);

// Get an expert from database
ExpertBase expert = ExpertHandler.GetExpert(994);

// Create AssignedQuestion
AssignedQuestion asgndQstn = new AssignedQuestion(question, expert);

// Add the assignment to the database;
// the returned AssignedQuestion has ID property set

asgndQstn = ExpertHandler.AddAssignedQuestion(asgndQstn);

using StarCommunity.Modules.Expert;

// Get an assinged question from database

AssignedQuestion asgndQstn = ExpertHandler.GetAssignedQuestion(987);

// Create an answer, initially in "not approved" state

Answer answer = new Answer("Answer header", "The answer itself",

 AnswerStatus.NotApproved, asgndQstn);

// Add answer to the database;

// the returned Answer object has its ID property set
answer = ExpertHandler.AddAnswer(answer);

76 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2.18.8 Approve an Answer

Before publishing the answer to the public, it might be necessary to review the answer to approve it. This section

provides information on how to approve an answer.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to answer a question. The namespace

StarCommunity.Modules.Expert is described by clicking on its name. Make sure you add the assembly as a reference,

mentioned in section 1.1.1.

using StarCommunity.Modules.Expert;

Approve an Answer

To approve an answer, the Answer object has to be retrieved from the database. Approving an answer means setting

the Status property to AnswerStatus.Approved. When the Answer object is changed, it has to be committed to

database using the UpdateAnswer method of the ExpertHandler class.

2.18.9 Get Questions Assigned to an Expert

Normally, when an expert logs into the site, you want to show the questions assigned. This section explains how to do

it in detail.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to answer a question. The namespace

StarCommunity.Modules.Expert is described by clicking on its name. Make sure you add the assembly as a reference,

mentioned in section 1.1.1.

// Get the answer from the database
Answer answer = (Answer)ExpertHandler.GetAnswer(396).Clone();

// Update answer status
answer.Status = AnswerStatus.Approved;

// Update answer in the database
answer = ExpertHandler.UpdateAnswer(answer);

using StarCommunity.Modules.Expert;

Tutorials | 77

© EPiServer AB

Get Questions Assigned to an Expert

To retrieve questions assigned to a specific Expert, all we need is to know the Expert (e.g. knowing the unique GUID).

After that we get the questions assigned to the Expert by calling the GetAssignedQuestions method of the

ExpertHandler class – the method then returns the AssignedQuestionCollection object, and each of the collection

elements (that is, AssignedQuestion objects), has a Question property which can be used to get the Question object

itself.

2.18.10 Get Question Answers

When a user choses a question on the site similar to the question it has, the user might want to see the answers to this

question. This section shows how to retrieve answers given to specific questions.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to answer a question. The namespace

StarCommunity.Modules.Expert is described by clicking on its name. Make sure you add the assembly as a reference,

mentioned in section 1.1.1.

Get Answers to a Question

The most common situation is when it is needed to display all answers given to a question. The example below shows

how one can do that.

// Get the question by its ID

Question question = ExpertHandler.GetQuestion(234);

// Get the answers given to this question (first page with 100

// answers)
AnswerCollection answers = ExpertHandler.GetAnswers(question, 1, 100);

// Get the expert
ExpertBase expert = ExpertHandler.GetExpert(333);

// Get expert assigned questions (first page of 100 questions)
AssignedQuestionCollection asgndQuestions =

ExpertHandler.GetAssignedQuestions(expert, 1, 100);

// Get questions itself

QuestionCollection questions = new QuestionCollection();

Foreach(AssignedQuestion aq in asgndQuestions)
{

 questions.Add(aq.Question);

}

using StarCommunity.Modules.Expert;

78 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

Get Answers Given by an Expert

It is sometimes usefull to know all answers given by a specific Expert, regardless of a Question. The code below

presents how to do that.

Get an Answer Given by an Expert to a Question

To get only the answer that an Expert submitted to a specific Question, you can use code similar to the one presented

below.

// Get the expert by its ID

ExpertBase expert = ExpertHandler.GetExpert(332);

// Get the answers given by this expert (first page with 100

// answers)
AnswerCollection answers = ExpertHandler.GetAnswers(expert, 1, 100);

// Get the expert by its ID

ExpertBase expert = ExpertHandler.GetExpert(332);

// Get the question by its ID

Question question = ExpertHandler.GetQuestion(323);

// Get the answer given by this expert to this question

Answer answer = ExpertHandler.GetAnswer(question, expert);

Tutorials | 79

© EPiServer AB

2.19 Forum

Forums are stored in a tree structure; in the root are the forum instances, followed by discussion rooms, and their child

rooms. A forum instance is a way of shielding different rooms from interacting with each other. In a room, different

topics can be posted and replied on.

The following kinds are available:

TYPE DESCRIPTION

Prioritized A prioritized topic is displayed above regular topics, keeping them there even if they are no

longer having active discussions.

Announcement Announced topics are displayed in all rooms of a forum instance and above prioritized and

regular topics.

Locked A topic can be locked in combination with being announced or prioritized. Locked topics can

no longer be replied to.

2.19.1 Adding a Forum

If you want to add a new “forum instance” to the root of the tree this is how you would proceed.

Import Necessary Namespaces

First import the necessary namespaces that will be used to add a forum instance. The namespace

StarCommunity.Modules.Forumis described by clicking on its name. Make sure you add the assembly as a reference,

mentioned in section 1.1.1.

Adding the Forum Instance

To add a forum instance we simply create a new ForumHandler object instance, together with a new Forum object

instance. The forum will need a Site as a parameter to the constructor; in this case we have selected to supply the

CurrentSite property, which returns the site we are currently browsing.

using StarCommunity.Modules.Forum;

Forum forum = new Forum(StarSuite.Core.SiteHandler.CurrentSite,

"Test Forum");

forum = ForumHandler.AddForum(forum);

80 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2.19.2 Adding a Topic

Topics are added to a room and can be created by guests, registered users or users wishing to be anonymous. This

article will describe how a registred user creates a new topic.

Import Necessary Namespaces

First import the necessary namespaces that will be used to add a topic. The namespaces

StarCommunity.Modules.Forum, StarCommunity.Core.Modules.Security and StarCommunity.Core are described by

clicking on their respective names. Make sure you add the assemblies as a reference, mentioned in section 1.1.1.

Adding the Topic

To add the topic we need a User object instance of the author of the topic together with a Room object instance of

where we want to post the topic. We then construct a Topic and supply it to the AddTopic method of the

ForumHandler to store it in the database.

2.19.3 Locking a Topic

By locking a topic you can mark it as not allowing further replies. In this article we will describe how to update a topic to

a locked state.

Import Necessary Namespaces

First import the necessary namespaces that will be used to lock a topic. The namespace StarCommunity.Modules.Forum

is described by clicking on its name. Make sure you add the assembly as a reference, mentioned in section 1.1.1.

using StarCommunity.Core;

using StarCommunirt.Core.Modules;

using StarCommunity.Core.Modules.Security;
using StarCommunity.Modules.Forum;

//Get the topic author by id

IUser user = (IUser)StarCommunitySystem.
CurrentContext.DefaultSecurity.GetUser(1234);

//Get the targeted room by id
RoomBase room = ForumHandler.GetRoom(1234);

Topic topic = new Topic(new UserAuthor(user),
"Topic subject",

"Topic text", room);

topic = ForumHandler.AddTopic(topic);

using StarCommunity.Modules.Forum;

Tutorials | 81

© EPiServer AB

Locking the Topic

To lock a topic we first get the Topic object instance by its id. By changing the Locked property we have made the

necessary changes in memory. To finalize the locking of the topic we need to store our changes in the database, we do

that by calling the UpdateTopic method of the ForumHandler. The topic is now marked as locked and the appropriate

measures can be taken in the user interface of the web page.

2.19.4 Removing a Topic

This article will describe how to remove a topic from a room.

Import Necessary Namespaces

First import the necessary namespaces that will be used to remove a topic. The namespace

StarCommunity.Modules.Forumis described by clicking on its name. Make sure you add the assembly as a reference,

mentioned in section 1.1.1.

Removing the Topic

To remove a topic we start with getting the Topic object instance we want to remove, by its id. When we have the

object instance we pass it to the RemoveTopic method, removing it from the database.

2.19.5 Moving a Topic

Moving of topics can be done in two ways. One way is to change the topics connection to a room, keeping its id and

leaving no trace of the move. Another way is by creating a copy in a new room, leaving a trace of the move in its old

location, where the trace keeps the old topic id. How this is done depends of the room’s TraceMove property.

Import Necessary Namespaces

First import the necessary namespaces that will be used to move a topic. The namespace

StarCommunity.Modules.Forum is described by clicking on its name. Make sure you add the assembly as a reference,

mentioned in section 1.1.1.

Topic topic = (Topic)handler.GetTopic(1234).Clone();
topic.Locked = true;

ForumHandler.UpdateTopic(topic);

using StarCommunity.Modules.Forum;

Topic topic = handler.GetTopic(1234);

ForumHandler.RemoveTopic(topic);

using StarCommunity.Modules.Forum;

82 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

Moving the Topic

To move the topic we need the object instance of the destination room, the topic to be moved and a TopicTrace to

leave in the old location. The TopicTrace will be used in case the topic’s room has the property TraceMove set to true.

2.19.6 Adding a Reply

Replies are added to topics and can be authored by guests, registered users or users wishing to be anonymous. This

article will describe how to add a reply to a topic.

Import Necessary Namespaces

First import the necessary namespaces that will be used to add a reply. The namespaces

StarCommunity.Modules.Forum, StarCommunity.Core.Modules.Security and StarCommunity.Core are described by

clicking on their respective names. Make sure you add the assemblies as a reference, mentioned in section 1.1.1.

Adding the Reply

To add the reply we need a User object instance of the author of the reply together with the Topic object instance we

wish to reply to. We then construct a Reply and supply it to the AddReply method of the ForumHandler to store it in

the database.

//Get the destination room by id

RoomBase destRoom = ForumHandler.GetRoom(1234);
//Get the topic by id

Topic topic = ForumHandler.GetTopic(1234);

//Move the topic

topic = ForumHandler.MoveTopic(topic,

destRoom,
new TopicTrace("Trace Subject", "Trace Text"));

using StarCommunity.Core;

using StarCommunity.Core.Modules;

using StarCommunity.Core.Modules.Security;
using StarCommunity.Modules.Forum;

//Get the reply author by id

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(1234);

//Get the topic we are replying to by id

Topic topic = ForumHandler.GetTopic(1234);

Reply reply = new Reply(new UserAuthor(user),

"Topic subject",
"Topic text", topic);

reply = ForumHandler.AddReply(reply);

Tutorials | 83

© EPiServer AB

2.19.7 Removing a Reply

This article will describe how to remove a reply to a topic.

Import Necessary Namespaces

First import the necessary namespaces that will be used to remove a reply. The namespace

StarCommunity.Modules.Forum is described by clicking on its name. Make sure you add the assembly as a reference,

mentioned in section 1.1.1.

Removing the Topic

To remove a reply we start with getting the Reply object instance we want to remove, by its id. When we have the

object instance we pass it to the RemoveReply method, removing it from the database.

using StarCommunity.Modules.Forum;

Reply reply = ForumHandler.GetReply(1234);

ForumHandler.RemoveReply(reply);

84 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2.20 Image Gallery

The ImageGallery is a central module in EPiServer Community Framework because it is used wherever images are

handled in a community system. ImageGallery management is done through the ImageGalleryHandler class in the

StarCommunity.Modules.ImageGallery namespace.

2.20.1 Adding an Image Gallery

In many cases, an ImageGallery is already provided and there is no need to create one. This is the case with Blog,

Calendar, Expert, Contest and MyPage where an ImageGallery is created upon object instantiation of these classes and

accessible via the ImageGallery property. However, you might want to create a new stand-alone ImageGallery. This is

done via the ImageGalleryHandler.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage image galleries. The namespace

StarCommunity.Modules.ImageGallery is described by clicking on its name. Make sure you add the assemblies as a

reference, mentioned in section 1.1.1.

First we create an ImageGallery object.

At this point the imageGallery object only exists in memory, we commit the object to database by calling the

AddImageGallery method in the ImageGalleryHandler class.

Note that the AddImageGallery method returns the committed object with the unique ID property set.

2.20.2 Removing an Image Gallery

To remove an ImageGallery you call the RemoveImageGallery method in the ImageGalleryHandler class.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage image galleries. The namespace

StarCommunity.Modules.ImageGallery is described by clicking on its name. Make sure you add the assemblies as a

reference, mentioned in section 1.1.1.

using StarCommunity.Modules.ImageGallery;

ImageGallery imageGallery =

new ImageGallery("Name", "Description");

imageGallery = ImageGalleryHandler.AddImageGallery(imageGallery);

using StarCommunity.Modules.ImageGallery;

Tutorials | 85

© EPiServer AB

First we need the ImageGallery to be removed:

Then we use the ImageGalleryHandler to remove it:

2.20.3 Adding an Image

As mentioned in Adding an Image Gallery, there are several classes already providing an ImageGallery accessible through

the ImageGallery property. However, in this sample we use an existing stand-alone ImageGallery to put our images in.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage image galleries and users. The namespaces

StarCommunity.Modules.ImageGallery, StarCommunity.Core and StarCommunity.Core.Modules.Security are described

by clicking on their names. We also need to import System.IO for a file Stream. Make sure you add the assemblies as a

reference, mentioned in Setting up Visual Studio.

We get the ImageGallery via the ImageGalleryHandler:

Then we create an Image object providing the ImageGallery and a System.IO.Stream object for the image file. We also

provide the imageGallery where we want the Image, the publish state and the current user who is uploading the image.

imageGallery = ImageGalleryHandler.GetImageGallery(1234);

ImageGalleryHandler.RemoveImageGallery(imageGallery);

using System.IO;

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;
using StarCommunity.Modules.ImageGallery;

imageGallery = ImageGalleryHandler.GetImageGallery(1234);

//Get the uploading user
IUser user =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(1234);

//Get the file stream

FileStream stream = new FileStream("foo.jpg", FileMode.Open);

Image image =

new Image("foo.jpg", "My first image", stream,

 imageGallery, PublishState.Published, user, false);

86 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

Note that the image object at this point only exists in memory, and we need to call the AddImage method in the

ImageGalleryHandler to commit it:

Note that the AddImage method returns the committed object with the unique ID property set.

2.20.4 Removing an Image

Removing an existing image is done via the ImageGalleryHandler.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage image galleries. The namespace

StarCommunity.Modules.ImageGallery is described by clicking on its name. Make sure you add the assemblies as a

reference, mentioned in Setting up Visual Studio.

First we get the Image object to remove:

Then we remove it:

2.20.5 Crop and Rotate an Image

The image Crop and Rotate90 methods are located in the ImageActionHandler class in the

StarCommunity.Modules.ImageGallery.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage image galleries. The namespace

StarCommunity.Modules.ImageGallery is described by clicking on its name. Make sure you add the assemblies as a

reference, mentioned in Setting up Visual Studio.

First we need to get an Image to edit. This is done using the GetImage method in the ImageGalleryHandler class. At the

same time we create an instance of the ImageActionHandler to access the crop and rotate methods:

image = ImageGalleryHandler.AddImage(image);

using StarCommunity.Modules.ImageGallery;

Image image = ImageGalleryHandler.GetImage(1234);

ImageGalleryHandler.RemoveImage(image);

using StarCommunity.Modules.ImageGallery;

Image image = ImageGalleryHandler.GetImage(1234);

Tutorials | 87

© EPiServer AB

To begin with, we need a temporary file to save our image during editing, before we commit the changes to database.

This can for example be done by using the System.IO.Path.GetTempFileName(), which creates such a file for us:

Then we rotate the image 90 degrees clockwise by calling the Rotate90 method in the ImageActionHandler:

To crop the image we need to specify the coordinates for the upper-left corner and width and height. These are then

passed to the Crop method in the ImageActionHandler class:

The Rotate90 and Crop methods are returning an ImageAction object containing data on the changes that were made

on the temporary image file. We collect the ImageAction objects to an ImageAction array:

To make the changes to the original Image object and commit the changes to database we call the ImportEditedImage

method in the ImageGalleryHandler class providing the image action array:

2.20.6 Getting a Thumbnail of an Image

In most cases you don’t want to display an image in the original format. Therefore, we use the GetThumbnail method in

the ImageGalleryHandler where we can define height and width of the returned image. We can then use the Url

property on the Thumbnail to display it on the web page.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage image galleries. The namespace

StarCommunity.Modules.ImageGallery is described by clicking on its name. Make sure you add the assemblies as a

reference, mentioned in Setting up Visual Studio.

string tmpImageFileName = System.IO.Path.GetTempFileName();

ImageAction rotateAction =
iah.RotateImage90(image.AbsolutePath, tmpImageFileName, true);

int x = 23;
int y = 54;

int w = 100;

int h = 100;

ImageAction cropAction =

ImageActionHandler.Crop(image.AbsolutePath, tmpImageFileName, image.Width,
image.Height, x, y, w, h);

ImageAction[] ia = new ImageAction[] { rotateAction, cropAction };

ImageGalleryHandler.ImportEditedImage(image, tmpImageFileName, ia);

using StarCommunity.Modules.ImageGallery;

88 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

First we need the Image from where we extract the Thumbnail. This is done via the ImageGalleryHandler:

Now we use the GetThumbnail method in the Image class to get a Thumbnail where we specify the height and width.

The available ThumbnailFormat properties are Proportional, ExactandReduceAndCrop. ThumbnailFormat.Proportional

scales the image so that its proportions are intact. Therefore you cannot expect to get an image size of 100 by 100.

ThumbnailFormat.Exactstretches the image if necessary to an image size of 100 by 100.

ThumbnailFormat.ReduceAndCrop makes sure you get a 100 by 100 image by cropping it if necessary.

We may now use the Url property in the Thumbnail class to display the image on a web page.

2.20.7 Getting Images in an Image Gallery

To get images from an ImageGallery to anImageCollection we use the GetImages method in the ImageGallery class.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage image galleries. The namespace

StarCommunity.Modules.ImageGallery is described by clicking on its name. Make sure you add the assemblies as a

reference, mentioned in Setting up Visual Studio.

First we get the ImageGallery that contains our images. This is done via the ImageGalleryHandler class:

We get the images in the image gallery imageGallery. We take page 1 with 20 items per page sorting on image name

ascending:

Image image = ImageGalleryHandler.GetImage(1234);

Thumbnail thumb =

image.GetThumbnail(100, 100, ThumbnailFormat.Proportional);

using StarCommunity.Modules.ImageGallery;

ImageGallery imageGallery = ImageGalleryHandler.GetImageGallery(1234);

int totalHits = 0;

ImageCollection ic =

imageGallery.GetImages(1, 20, out totalHits,
new ImageSortOrder(ImageSortField.Order, SortDirection.Ascending));

Tutorials | 89

© EPiServer AB

2.21 Moblog

The Moblog module allows MMS messages from mobile phones to be sent to a community running EPiServer

Community. The Moblog module can receive and store text, image, sound and video content and has a series of

configuration options. By defining destination filters in the EPiServer Community administration interface content can be

stored in the following places:

DESTINATION Description

MyPage The content is stored in the MyPage Image Gallery/Document Archive. The correct MyPage is

found by matching the MMS sender’s phone number against the “msisdn” attribute of the

MyPage owner. The attribute to look to can be changed in the Moblog config file.

Selected The content is stored in an Image Gallery/Document Archive selected by the administrator.

Ignore The content of a specific type is ignored.

2.21.1 Redirecting an Unwire MMS to a Specific Destination

The default installation of the Moblog module comes integrated with Unwire. Unwire is a mobile enabler company that

can deliver MMS messages in an easily read XML format. The Moblog module already handles this format. Though in

some cases delivering content to other parts of the community than the MyPage may be necessary, let’s say to a club

matching the name mentioned in the message. This article will explain how you as a developer can build a web page

that serves as the receiving point of the Unwire message, how to parse it and then decide its destination before storing

it.

Import Necessary Namespaces

First import the necessary namespaces that will be used to redirect an MMS message.

The namespaces StarCommunity.Modules.Moblog, StarCommunity.Modules.Moblog.ContentProviders.Unwire and

StarCommunity.Modules.ImageGallery, are described by clicking on their respective names. Make sure you add the

assemblies as a reference, mentioned in section 1.1.1.

using StarCommunity.Modules.Moblog;

using StarCommunity.Modules.Moblog.ContentProviders.Unwire;

using StarCommunity.Modules.ImageGallery;

90 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

Redirecting the Message

The aim of this web page is to first get the UnwireContentProvider singleton and then accept the Unwire request for

the web page, mentioned in the Unwire documentation. Parse the XML with the ParseMmsXml method to retrieve an

Mms in-memory object instance. The following code is up to the implementer, but in this case we create an in-memory

filter directing images to a specific ImageGallery, ignoring all other content types, except text, which is always stored in

the message itself. When we finally call the OnMessageReceived method the message is stored in the database and all

images in it will end up in the ImageGallery we specified in the filter.

UnwireContentProvider unwireCp = null;

foreach(ContentProviderBase cp in

MoblogModule.Instance.ContentProviders)
{

 if(cp is UnwireContentProvider)

 unwireCp = (UnwireContentProvider)cp;
}

if(unwireCp == null)
 throw new ApplicationException("Unwire Content Provider

is not installed", null);

Response.Clear();

Response.ClearHeaders();

Response.ContentType = "text/plain";
Response.AddHeader("cmd", "asynch-no-trace");

Response.Flush();

System.Xml.XmlDataDocument xmlDoc =

new System.Xml.XmlDataDocument();

xmlDoc.Load(Request.InputStream);

Mms mms = unwireCp.ParseMmsXml(xmlDoc);

//Analyze the mms and create a destination filter

MoblogHandler moblogHandler = new MoblogHandler();

MmsDestinationFilter filter =

new MmsDestinationFilter(mms.ShortCode, mms.MediaCode, null,

 MmsContentDestination.Selected, ImageGalleryHandler.GetImageGallery(1234),
MmsContentDestination.Ignore, null, MmsContentDestination.Ignore, null);

//Store the message content in the destinations
//referred to in the filter

unwireCp.OnMessageReceived(mms, filter);

Tutorials | 91

© EPiServer AB

2.22 MyPage

The EPiServer Community MyPage module contains the functionality that is used on a user’s profile.

2.22.1 Blocking a User

Blocking a user, flags that user as blocked in the system. This can then be used to stop a user from communicating with

the user that added the block from sending messages, adding as friend, etc.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to block a user. The namespacesStarSuite.Core,

StarCommunity.Core, StarCommunity.Core.Modules.Security and StarCommunity.Modules.MyPage are described by

clicking on their respective names. Make sure you add the assembly as a reference, mentioned in section 1.1.1.

Blocking a User

The code below shows how a user is blocked. Initially, get the two users. Then, get the MyPage class for the user who is

making the block. The block is created by taking the parameters of this MyPage class and the User object of the one to

block.

using StarSuite.Core;

using StarCommunity.Core;
using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.MyPage;

//Get the logged in user

IUser user = (IUser)StarCommunitySystem.
CurrentContext.DefaultSecurity.CurrentUser;

// Get the user to block
IUser user2 = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(1234);

// Get the my page object for the current user and current site

MyPage mp = MyPageHandler.GetMyPage(user, SiteHandler.CurrentSite);

//Block this user

MyPageHandler.AddBlock(mp, user2);

92 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2.22.2 Seeing if a User is blocked

Since a flag is set to block a user, this flag can then be retrieved to determine wheter or not this user is blocked.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to see if the user is blocked. The namespaces StarSuite.Core,

StarCommunity.Core, StarCommunity.Core.Modules.Securityand StarCommunity.Modules.MyPage are described by

clicking on their respective names. Make sure you add the assembly as a reference, mentioned in section 1.1.1.

Seeing if a User is blocked

The code section below displays how the IsBlocked function is used to see if the user is blocked or not. This function

returns true if blocked, and false if not blocked.

2.22.3 Getting Blocked Users

If you want to display all users a person has blocked as a list on their profile, this can be retrieved from the system.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to get blocked users. The namespaces StarSuite.Core,

StarCommunity.Core, StarCommunity.Core.Modules.Securityand StarCommunity.Modules.MyPage are described by

clicking on their respective names. Make sure you add the assembly as a reference, mentioned in section 1.1.1.

using StarSuite.Core;

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;
using StarCommunity.Modules.MyPage;

//Get the logged in user
IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.CurrentUser;

// Get the user to see their block status

IUser user2 = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(1234);

// Get the my page object for the current user and current site

MyPage mp = MyPageHandler.GetMyPage(user, SiteHandler.CurrentSite);

//Determine if the user is blocked

bool isBlocked = MyPageHandler.IsBlocked(mp, m_user2);

using StarSuite.Core;

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;
using StarCommunity.Modules.MyPage;

Tutorials | 93

© EPiServer AB

Getting Blocked Users

The code below displays how to get a list of blocked users from a MyPage object.

2.22.4 Setting a Portrait Image

A portrait image is created on the user by setting the Portrait property of the MyPage object. This property is an

ImageGalleryImage.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to set the portrait image. The namespacesStarSuite.Core,

StarCommunity.Core, StarCommunity.Core.Modules.Security and StarCommunity.Modules.MyPage are described by

clicking on their respective names. Make sure you add the assembly as a reference, mentioned in section 1.1.1.

//Get the logged in user
IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.CurrentUser;

// Get the my page object for the current user and current site

MyPage mp = MyPageHandler.GetMyPage(user, SiteHandler.CurrentSite);

// The list of users that are blocked for this MyPage owner

StarSuite.Security.UserCollection blockedUsers =

 mp.GetBlockedUsers(1, 10);

using System.IO;

using StarSuite.Core;

using StarCommunity.Core.Modules.Security;
using StarCommunity.Modules.MyPage;

using StarCommunity.Modules.ImageGallery;

94 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

Setting a Portrait Image

View the code below to see a sample of how the profile portrait image can be set.

//Get the logged in user

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.CurrentUser;

// Get the my page object for the current user and current site

MyPage mp = (MyPage)MyPageHandler.GetMyPage(user,
SiteHandler.CurrentSite).Clone();

private string exampleFile = @".\Image.jpg";
FileStream fs = new FileStream(exampleFile, FileMode.Open);

using(fs)
{

//Create the Image object
Image portrait = newImage("Portrait",

"Some description", fs, user);

//Set the Portrait property

mp.Portrait = portrait;

//Update the MyPage class

MyPageHandler.UpdateMyPage(mp);

}

Tutorials | 95

© EPiServer AB

2.23 NML

NML is a markup language much like HTML. To let community members use NML for producing rich text instead of

letting them supply HTML directly has some great advantages.

First of all, you can easily limit what can by done by only defining NML tags that do sane, safe things. Secondly, the

community member can not alter the look of the entire page (unless such tags are defined), only the area that the NML

output is visible in will be affected. That is, even if opened tags are not properly closed, no “leakage” occurs. Defining

Tags in Configuration File.

Example Configuration

This is part of the default configuration. This will be helpful to have available as a reference when reading the

explanation of the NML configuration file.

The Category tag

The configuration file contains one or more Category tags. Any tags defined are under one of these categories. This

means that different categories can have completely different tags defined, or different implementations of the same tag.

When rendering NML, the category to use can be specified, otherwise the category named “general” is used.

The Tag tag

This tag has the mandatory Trigger attribute which is the name that defines the tag. If you want to be able to use

“[b]foo[/b]”, the Trigger value would be “b”.

The PreTemplate tag

This tag holds the template text for the output before the text that the tag encloses. If you have “[b]foo[/b]”, this is the

template for the text that should be added before “foo” in the output.

<?xml version="1.0" encoding="UTF-8"?>

<NMLSettings xmlns="http://netstar.se/StarCommunity/NML/NMLSettings.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://netstar.se/StarCommunity/NML/NMLSettings.xsd">

<Category Name="general">

<Tag Trigger="font">
<PreTemplate></PreTemplate>

<PostTemplate></PostTemplate>

<Attribute Name="face" DefaultValue="verdana"
 Template="font-family:{value};">

<AllowedValue>verdana</AllowedValue>

<AllowedValue>arial</AllowedValue>
<AllowedValue>courier</AllowedValue>

</Attribute>

<Attribute Name="size" DefaultValue="10"
Template="font-size:{value}px;">

<AllowedValue>18</AllowedValue>

<AllowedPattern>^1[0-4]$</AllowedPattern>
</Attribute>

</Tag>

</Category>
</NMLSettings>

96 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

The PostTemplate tag

This tag holds the template text for the output after the text that the tag encloses. If you have “[b]foo[/b]”, this is the

template for the text that should be added after “foo” in the output.

The Attribute tag

There can be zero or more Attribute tags for each Tag tag. These define possible attributes to that NML tag. The

mandatory Name attribute defines the name of the NML attribute. This is used as the key when inserting the attribute

value in the PreTemplate or PostTemplate text. In the template texts “{keyname}” is replaced with the attribute value

with that name. The mandatory DefaultValue attribute defines the default value of the NML attribute. The mandatory

Template attribute defines the template text for the attribute in the output. Each Attribute tag may have zero or more

AllowedValue or AllowedPattern tags, these are used to verify that the user-provided value for the attribute is sane.

AllowedValue defines a static string to validate against, AllowedPattern defines a regular expression to use for validation.

If any of the AllowedValue or AllowedPatterns match the supplied value for the attribute, the input will be accepted.

Otherwise the supplied value will be ignored.

2.23.1 Rendering NML Content

The main purpose of the NML module is to render NML code. This is very easy to do once you have decided on what

tags to use and when you have added them in the configuration file.

Import Necessary Namespaces

First, import the necessary namespaces that will be needed for this. The namespace StarCommunity.Modules.NML is

described by clicking on the name. Make sure you also add the mentioned assembly as a reference, as mentioned in

section 1.1.1.

Limiting Maximum Word Length

To render an NML string, simply call the static Render method in the NMLModule. It is also possible to provide an NML

category as an additional argument, if desired.

2.23.2 Limiting Maximum Word Lengths

There is functionality in the NML module to encode text with HTML, render NML and limit max word length, all in one

single step. This method is helpful in many cases where you want to render NML, and don’t want to do any additional

manipulation of the text manually.

Import Necessary Namespaces

First, import the necessary namespaces that will be needed. The namespace StarCommunity.Modules.NML is described

by clicking on the name. Make sure you also add the mentioned assembly as a reference, as mentioned in section 1.1.1.

using StarCommunity.Modules.NML;

NMLModule.Render("a [b]string[/b]");

using StarCommunity.Modules.NML;

Tutorials | 97

© EPiServer AB

Limiting Maximum Word Length

To have a NML string rendered, with words longer than a given length broken up, simply call the static Format method

in NMLModule. It is also possible to provide an NML category as an additional argument, if desired.

NMLModule.Format
("a string with a [b]looooooooooooooooooong[/b] word", 7);

98 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2.24 OnlineStatus

The EPiServer Community OnlineStatus module provides the tools to see which users are logged in to the site.

Functionality includes seeing if a user is currently online, getting the date that a user was last online and getting a list of

the last logged in users.

2.24.1 Seeing if a User is Online

It is easy to see if a user is currently online. This can be used on the site to indicate the user’s status.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to see if a user is online. The namespaces

StarCommunity.Core, StarCommunity.Core.Modules.Security and StarCommunity.Modules.OnlineStatus are described

by clicking on their respective names. Make sure you add the assembly as a reference, mentioned in section 1.1.1.

Seeing if a User is Online

The following code shows how to retrieve a user and to determine the online status.

2.24.2 Getting a User’s Last Login Date

The OnlineStatus module provides functionality to return a date indicating the date and time that a user was last online.

This date can then for example be displayed on the user’s profile page.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to see if a user is online. The namespaces

StarCommunity.Core, StarCommunity.Core.Modules.Security and StarCommunity.Modules.OnlineStatus are described

by clicking on their respective names. Make sure you add the assembly as a reference, mentioned in section 1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.OnlineStatus;

//Get the logged in user

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(1234);

//Flag to see if the user is online

bool isOnline = OnlineStatusModule.IsOnline(user);

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;
using StarCommunity.Modules.OnlineStatus;

Tutorials | 99

© EPiServer AB

Getting a User’s Last Login Date

The following code displays how to retrieve the last date a user was logged in.

2.24.3 Getting Currently Logged in Users

Most communities want to display a listing of the last users that logged it. This is easy to do using the OnlineStatus

module.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to see if a user is online. The namespaces,

StarSuite.Core.Modules.Security and StarCommunity.Modules.OnlineStatus are described by clicking on their respective

names. Make sure you add the assembly as a reference, mentioned in section 1.1.1.

Getting Currently Logged in Users

The code below shows how to get the last ten logged in users.

//Get the logged in user

IUser user = (IUser)StarCommunitySystem.
CurrentContext.DefaultSecurity.GetUser(1234);

//Get the date this user was last online
DateTime lastLogin = OnlineStatusModule.GetLastLogin(user);

using StarSuite.Core.Modules.Security;

using StarCommunity.Modules.OnlineStatus;

int numUsersToGet = 10;

UserCollection onlineUsers =
 OnlineStatusModule.GetLastLogins(numUsersToGet);

100 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2.25 Poll

The Poll module provides functionality that enables the creation of polls, voting and getting the vote count of specific

choices within a poll. Voting in polls is available not only for the community members but community site visitors can

also take part in voting; this can be useful to get feedback even from people who are not members.

2.25.1 Adding a Poll

Before a poll can be used, first it has to be created and added to the community. To add a poll, first an object of Poll

type has to be created, and then it has to be committed in the database using the AddPoll method of the PollHandler

class.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to add a poll. The namespaces StarSuite.Core,

StarCommunity.Core and StarCommunity.Modules.Poll are described by clicking on their respective names. Make sure

you add the assembly as a reference, mentioned in section 1.1.1.

using StarSuite.Core;

using StarCommunity.Core;
using StarCommunity.Core.Modules;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Poll;

Tutorials | 101

© EPiServer AB

Add a Poll

In this example, we will add a test poll to the community. The poll will contain three choices, and will not be assigned to

any site. First, an object of the Poll type is created, and then it has to be committed to the database using the AddPoll

method of the PollHandler class.

2.25.2 Removing a Poll

When a poll is no longer needed, it can be removed from the community database. To remove a poll, we need to get

the poll information from the database (get the Poll object). Then, the poll can be deleted using the RemovePoll

method of the PollHandler class.

// Poll text

string text = "Best hamburgers are made by:";

// Poll author – current user will be the author

IUser currentUser = (IUser)StarCommunitySystem.

 CurrentContext.DefaultSecurity.CurrentUser;
IAuthor author = new UserAuthor(currentUser);

// Poll activity
bool isActive = true;

// Poll site – when set to null, the poll is not assigned
ISite site = null;

// Start and end date when voting can occur
DateTime start = new DateTime(2007,3,1);

DateTime end = new DateTime(2007,4,1);

// Create a poll object

Poll poll = new Poll(text, author, isActive, site, start, end);

// Create two choices – when creating Choice set text and order

Choice choice1 = new Choice("McDonald’s", 0);

Choice choice2 = new Choice("Burger King", 1);

// Add choices to the poll

poll.Choices.Add(choice1);
poll.Choices.Add(choice2);

// Commit poll object in database;
// after this operation poll’s ID property is set

poll = PollHandler.AddPoll(poll);

102 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

Import Necessary Namespaces

First, import the necessary namespace that will be used to remove a poll. The namespace StarCommunity.Modules.Poll

is described by clicking on its name. Make sure you add the assembly as a reference, mentioned in section 1.1.1.

Remove a Poll

In the example below, we assume that we know which poll that shall be removed – the poll ID is known (previously

selected or found). The Poll object is created by getting it from the database by ID, and then the poll is removed using

the RemovePoll method of the PollHandler class.

2.25.3 Voting in a Poll

Voting can be available for community members only, or for all site visitors. If you decide to use the Vote object

constructor with the user parameter, you have to remember that logged in users will be able to vote only once in a

poll, because the framework checks whether or not a user already voted in the poll. This allows for controlling the

voting process – one user cannot vote more than once. On the other hand, you may decide not to register who voted

and how they voted, and not to provide user information to the vote. This way un-registered users are allowed to vote,

users can vote more than once.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to vote in a poll. The namespaces StarCommunity.Core,

StarCommunity.Core.Modules.Security and StarCommunity.Modules.Poll are described by clicking on their respective

names. Make sure you add the assembly as a reference, mentioned in section 1.1.1.

using StarCommunity.Modules.Poll;

// Get the poll from the database
Poll poll = PollHandler.GetPoll(334);

// Remove the poll from the database
PollHandler.RemovePoll(poll);

using StarCommunity.Core;
using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Poll;

Tutorials | 103

© EPiServer AB

Voting in a Poll

To vote in a poll, you have to get the Poll object that the user wants to vote in. After that, the Choice within the Poll

has to be selected, and used to construct the Vote object. In this example the Vote object is created using a

constructor that takes the current user as the one that votes in the poll.

2.25.4 Display the Current State of a Poll

When creating a poll, there is a need not only to allow users to vote in it, but also to show them the results of the

voting. There are two main object properties that help to determine current status: Poll.VoteCount, which gets the total

number of votes in this poll, and Choice.VoteCount, which gets the number of votes of this choice. Knowing those two

numbers, it is easy to calculate distribution of votes between choices. In this example we will create a table with

percentage values that describe vote distribution in the poll.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to vote in a poll. The namespaces StarCommunity.Core and

StarCommunity.Modules.Poll are described by clicking on their respective names. Make sure you add the assembly as a

reference, mentioned in section 1.1.1.

// Get the poll to vote
Poll poll = PollHandler.GetPoll(11);

// Get the choice to vote to
Choice choice = poll.Choices[1];

// Get the current user that will vote
IUser currentUser = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.CurrentUser;

// Create Vote object

Vote vote = new Vote(choice, currentUser);

// Register the vote in the database

PollHandler.Vote(vote);

using StarCommunity.Modules.Poll;

104 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

Get the Current State

In the example below, we will create a table of integer values that represent percentage distribution of votes among

poll choices. In a real life scenario, these numbers can be used e.g. to display a percentage bar chart that will show how

people voted in this poll.

After a poll ha been retrieved from the database, we have access to all the properties of the poll itself, as well as its

choices. There is no need to use other PollHandler methods to retrieve information about the poll – the properties

provide all necessary data.

2.25.5 Adding Choices after Creation

The poll choices do not have to be added before the poll is committed in the database. It is possible to create a poll

with its text (a question), and after that to add choices (e.g. after a research on what choices are available). This

example will present how to update a poll with new choices.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to add choices to a poll. The namespace

StarCommunity.Modules.Poll is described by clicking on its name. Make sure you add the assembly as a reference,

mentioned in section 1.1.1.

// Get the poll get state

Poll poll = PollHandler.GetPoll(11);

// Create table to keep the percentages

int[] percentage = new int[poll.Choices.Count];

int choiceVoteCount = 0;

int totalVotes = poll.VotesCount;

// Fill the table with calculated percentages

for(int ix = 0; ix < poll.Choices.Count; ix++)
{

 choiceVoteCount = poll.Choices[ix].VoteCount;

 percentage[ix] = (int)((((float)choiceVoteCount)/totalVotes)*100);
}

using StarCommunity.Modules.Poll;

Tutorials | 105

© EPiServer AB

2.25.6 Add Choices to Existing Poll

First, we will need to retrieve the Poll object from the database. After that, we can create as many Choice objects as we

need and add them to the Choices collection of the Poll object. When all Choice objects have been added, we need to

save the changes in the database – we use the UpdatePoll method of the PollHandler class. The PollHandler adds,

updates or removes any changed choices within the Poll.

// Retrieve Poll from the database

Poll poll = (Poll)PollHandler.GetPoll(33).Clone();

// Determine current maximum choice order

int maxOrder = 0;

foreach(Choice ch in poll.Choices)
{

 if (ch.Order > maxOrder)

 maxOrder = ch.Order;
}

// Create two additional choices to add – when creating Choice
// set text and order

Choice choice1 = new Choice("Added choice 1", ++maxOrder);

Choice choice2 = new Choice("Added choice 2", ++maxOrder);

// Add choices to the poll

poll.Choices.Add(choice1);
poll.Choices.Add(choice2);

// Commit poll object in database
poll = PollHandler.UpdatePoll(poll);

106 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2.26 StarViral

The StarViral Module provides a useful viral marketing tool to attract more members to the community. We can

imagine a scenario when each member of the community is granted points for each new member that is added from

the user’s referral – this scenario is very easy to implement using the StarViral Module. Campaigns can be administered

using the administration interface. Creation of referrals does not have to be done within a campaign, but it is very useful

to do so. When referrals are categorized within campaigns, it is easy to compare the number of new members attracted

and the number of referrals created depending on the campaign rules, which helps to plan the next campaigns.

2.26.1 Adding a Referral

Adding a referral will store a record between the two users. If the referred user registers with her/his e-mail address,

the referral record will be updated and reflect the successful referral. A referral does not have to belong to a campaign,

but preferably it should, making it possible to see the results in the administration interface.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to add a referral. The namespaces StarCommunity.Core,

StarCommunity.Core.Modules.Security and StarCommunity.Modules.StarViralare described by clicking on their

respective names. Make sure you add the assembly as a reference, mentioned in section 1.1.1.

Adding a Referral

The code below will create a referral record between the logged in user and their friend.

2.26.2 Display the State of Referrals

The referrals a user has made can be retrieved and displayed as a listing with the registration state or as a count on their

profile page.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.StarViral;

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.CurrentUser;

Campaign campaign = StarViralHandler.GetCampaign(1);

Referral re = new Referral("test@abc.com", "Test user name", user, campaign);
re = StarViralHandler.AddReferral(re);

Tutorials | 107

© EPiServer AB

Import Necessary Namespaces

First, import the necessary namespaces that will be used to display the state of referrals. The namespaces

StarCommunity.Core, StarCommunity.Core.Modules.Security and StarCommunity.Modules.StarViral are described by

clicking on their respective names. Make sure you add the assembly as a reference, mentioned in section 1.1.1.

Display the State of Referrals

The referrals can be retrieved easily by using the code below. If the boolean property HasRegistered is set to true, the

referred user has registered, if false, the user has not registered.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;
using StarCommunity.Modules.StarViral;

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.CurrentUser;

//Get all referrals a user has made to display in a listing

int totalHits = 0;
ReferralCollection referrals = StarViralHandler.GetReferrals(user, 1, 10, out

totalHits,

new ReferralSortOrder(ReferralSortField.ReferralDate,
SortDirection.Descending)

);

//Get the total number of referrals a user has made

int myReferralCount = StarViralHandler.GetNumberOfReferrals(user, false);

108 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2.27 Video Gallery

The Video Gallery is used for adding and retrieving videos in EPiServer Community. The solution is devided into two

parts.

• A Content Distribution Network (CDN) where the files are stored and transcoded into a web friendly format.

• A CDN-provider that receives and processes events from its CDN, and relays the information to EPiServer

Community.

EPiServer Community is shipped with a default CDN and CDN-provider which is provided by Netstar Application

Services.

2.27.1 Video Gallery function (video formats)

The StarCommunity Video Gallery Function stores and manages videos. Uploaded videos are automatically encoded

into flash video, a widely spread “web friendly format”. Flash video provides fast, lightweight and platform independent

playback. The Video Gallery Function generates Image Samples of every uploaded video and stores them in an Image

Gallery bound to the Video. The Image Samples provides a fast overview of the video, while saving performance and

bandwidth.

Note that a content delivery network (CDN) is required in order to use the Video Gallery Function.

Supported File Types Types

Container files AVI, MOV, MKV, ASF, MP4, 3GP

Video Codecs DivX, Xvid, H.264, WMV, MPEG2, MSMPEG4, Sorensen

Audio Codecs MP3, AAC, WMA, AC3

Tutorials | 109

© EPiServer AB

2.27.2 Adding videos

In order for the video to be posted in a correct and secure way to the CDN, the Video Gallery system provides a web

control that intercepts the click of a button, rewrites the post URL to the CDN, and when the post is complete, returns

to the originating page. The process flow of adding a video when using the default CDN and CDN-provider is shown in

the figure below:

Below is a simple example of the codefront of an upload page where the VideoPostRewriter control is used. The

PostButtonID attribute should contain the ID of the Button or LinkButton that should upload the video and whose Click

event will call VideoGalleryHandler.AddVideo(Video).

The requirements for using the VideoPostRewriter control are:

• EnableEventValidation must be set to “false”, either in the Page itself or in Web.config for the <pages> element

so that the CDN-provider can post to the upload page.

• machineKey must be set to a fixed value in Web.config so that the ViewState encryption does not change after

an application restart.

This MSDN-article (http://msdn2.microsoft.com/en-us/library/ms998288.aspx) describes how to do it and also supplies

code samples on generating a unique machine key under section “Web Farm Deployment Considerations”.

110 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

Adding a video is done via the VideoGalleryHandler.AddVideo(Video) method. In the codebehind below we show how

it’s called when the UploadButton.Click event is fired.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage video galleries. The namespaces

StarCommunity.Modules.VideoGallery, StarCommunity.Core, StarCommunity.Core.Modules and

StarCommunity.Core.Modules.Security are described by clicking on their names. Make sure you add the assemblies as a

reference, mentioned in Setting up Visual Studio.

<%@ Page Language="C#" AutoEventWireup="true" EnableEventValidation="false"

CodeBehind="UploadVideo.aspx.cs" Inherits="Sample.UploadVideo" %>

<%@ Register TagPrefix="sc" Assembly="StarCommunity.Modules.VideoGallery"
 Namespace="StarCommunity.Modules.VideoGallery" %>

...

<sc:VideoPostRewriter ID="vpr" runat="server" PostButtonID="UploadButton" />

File: <asp:FileUpload ID="FileUpload" runat="server" />

Name: <asp:TextBox ID="textBoxName" runat="server" />

Description:

<asp:TextBox ID="textBoxDescription" TextMode="MultiLine" runat="server" />

<asp:Button ID="UploadButton" Text="Upload" runat="server"

 OnClick="UploadButton_Click" />

using StarCommunity.Core;

using StarCommunity.Core.Modules;
using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.VideoGallery;

Tutorials | 111

© EPiServer AB

Calling AddVideo

The video variable now contains the video committed to the database with its unique ID set.

Note that the UploadButton_Click method will not be called when the user clicks the button in the webbrowser, it is

actually called by the CDN-provider when it gets the Received-notification from the CDN, as shown in the above

process flow chart, this will happen within a minute or so after the video file has been completely uploaded.

If the page throws an exception when the CDN-provider “clicks” the button, it will be shown in the server’s Application

EventLog. The CDN-provider will retry this 3 more times until it gives up and the video will be erased from the CDN’s

queue and storage.

During this time, and if everything was successful in previous steps, the CDN has probably begun transcoding the video

file, when this is done the video’s ProcessingStage will be set to ProcessingStage.Completed and it can now be displayed

in a webpage or in the administration interface.

2.27.3 Remove video

Removing a video is done by calling VideoGalleryHandler.RemoveVideo(Video). The video will be removed locally from

EPiServer Community and at the CDN’s storage.

2.27.4 Update video

Updating a video is done by calling VideoGalleryHandler.UpdateVideo(Video). Since the cache is read-only, we need to

clone objects before we update them so that the changes are not visible before they are committed to the database.

protected void UploadButton_Click(object sender, EventArgs e)

{
 VideoGallery vg = VideoGalleryHandler.GetVideoGallery(1234);

 IAuthor author = null;
 if (StarCommunitySystem.CurrentContext.DefaultSecurity.

 CurrentUser != null)

 author = new
 UserAuthor((IUser)StarCommunitySystem.CurrentContext.

 DefaultSecurity.CurrentUser);

 else
 author = new GuestAuthor("Guest");

 Video video = new Video(this.textBoxName.Text,
 this.textBoxDescription.Text, vg, PublishState.Published,

 author);

 video = VideoGalleryHandler.AddVideo(v);
}

using StarCommunity.Modules.VideoGallery;
...

Video video = VideoGalleryHandler.GetVideo(1234);

VideoGalleryHandler.RemoveVideo(video);

112 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2.27.5 Get videos

Videos from a videogallery can be retrieved from various overloads in VideoGalleryHandler or via methods in the

VideoGallery class.

This example shows how to retrieve videos from a video gallery, in this case only the ones with PublishState set to

PublishState.Published on the first page with a limit of 10 records per page. The variable totalItems will contain the total

amount of videos in the videogallery with PublishState.Published, since it was our criteria.

using StarCommunity.Modules.VideoGallery;

...

Video video = VideoGalleryHandler.GetVideo(1234);

// Clone it

video = (Video)video.Clone();

video.Name = “new name”;

VideoGalleryHandler.UpdateVideo(video);

using StarCommunity.Core.Modules.Publishing;

using StarCommunity.Modules.VideoGallery;

...
VideoGallery vg = VideoGalleryHandler.GetVideoGallery(1234);

int totalItems = 0;

VideoCollection videos = vg.GetVideos(1, 10, PublishState.Published,
 out totalItems);

Tutorials | 113

© EPiServer AB

2.27.6 Get preview frames

For each video a set of frames are captured that spans over the whole video. These can be used to get a quick

overview of the video content. One of these frames is set as the default frame, or the PreviewFrame as the property is

called on the Video class. The number of preview frames, and the default frame is decided by the CDN. The

FrameGallery property of the Video class is the ImageGallery containing all captured frames.

2.27.7 Playing a Video

EPiServer Community’s default CDN transcodes all videos to into Adobe Flash Video (flv) and can be played by any

flash video player on the market. However, the flash player used by the administration interface (FLV Media Player from

jeroenwijering.com) is shipped with the product and can be used on your web site.

Please note:

• The flash video player itself is not supported by EPiServer Community.

• The flash video player is licensed to EPiServer Community directly, for an unrestricted number of websites.

Please review http://www.jeroenwijering.com for how licensensing issues may affect your website.

• If you decide to use the FLV Media Player, be sure to make a copy of flvplayer.swf and swfobject.js in

/Netstar/StarCommunity/Modules/VideoGallery/ and put them in a separate directory in case the directory

structure for some reason is changed by EPiServer Community in the future.

Please refer to;

• http://www.jeroenwijering.com/?item=Javascript_interaction

• http://sc3demo.netstar.se/en/StarCommunity3/

For examples on how to implement this player.

using StarCommunity.Modules.VideoGallery;
using StarCommunity.Modules.ImageGallery;

using StarSuite.Core.Modules.Sorting;

...

// Get the video from where to get preview frames

Video video = VideoGalleryHandler.GetVideo(1234);

// Get the default preview frame (Image)

Image image = video.PreviewFrame.GetThumbnail(100, 75,
 ThumbnailFormat.ReduceAndCrop);

// Get all the captured frames as an ImageCollection
ImageCollection images = video.FrameGallery.GetImages(1, 10, new

 ImageSortOrder(ImageSortField.Order,

 SortingDirection.Ascending));

114 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

2.27.8 The Configuration File

The configuration file for the VideoGallery Module requires custom values for the module to work as it relies on a

CDN and its CDN-provider.

In this section we will go through the meaning of the different settings.

Parameter type Description

PollingIntervalSeconds Int The interval in seconds that the CDN-provider

should poll for events at the CDN.

CdnProvider/Type String The qualified .Net assembly and class name of the

CDN-provider that should be used.

CdnProvider/AccessKey String The access key, or application identifier used when

communicating with the CDN.

CdnProvider/SecretAccessKey String The secret access key used to generate

authentication hashes when communicating with the

CDN.

CdnProvider/UploadUrl String The URL of the CDN webserver that video files will

be posted to.

CdnProvider/WebServiceUrl String The URL of the CDN’s webservice.

CdnProvider/ContentHostUrl String The URL of the webserver that allows access to the

video content.

Tutorials | 115

© EPiServer AB

2.28 Webmail

Webmail management in EPiServer Community is done through the WebmailHandler class in the

StarCommunity.Webmail namespace.This article shows you, the developer, examples of how to add Webmail

functionality to a community site with the help of the EPiServer Community Framework.

2.28.1 Getting the status of an account

It is essential to know whether a user has a mail account, and if so, that it is active.

Import Necessary Namespaces

First, import the necessary namespaces that will be needed. The namespaces StarCommunity.Core,

StarCommunity.Core.Modules.Security and StarCommunity.Modules.VideoGallery

The StarCommunity.Modules.VideoGallery namespace contains classes for creating video galleries and uploading videos

for transcoding into a web friendly format, like Adobe Flash Video.

StarCommunity.Modules.Webmail are described by clicking on their respective names. Make sure you also add the

mentioned assemblies as references, as mentioned in section 1.1.1.

Getting the Account for a User and the Status of that Account

First we get the desired User object, then the MailAccount for that user, and from the account, we can then get the

MailAccountStatus.

MailAccountStatus itself is an enum with the values Active, Deactivated and DoesNotExist. This way you can tell if there

is an account, and if so, if it is active or not.

2.28.2 Creating an account

For a site member to be able to receive e-mail, they need to have an account as well as an address associated with that

account. If a user does not already have an account, one will need to be created.

Import Necessary Namespaces

First, import the necessary namespaces that will be needed. The namespaces StarCommunity.Core,

StarCommunity.Core.Modules.Securityand StarCommunity.Modules.VideoGallery

The StarCommunity.Modules.VideoGallery namespace contains classes for creating video galleries and uploading videos

for transcoding into a web friendly format, like Adobe Flash Video.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Webmail;

IUser user = (IUser)StarCommunitySystem.

 CurrentContext.DefaultSecurity.GetUser(17);

MailAccount account = WebmailHandler.GetMailAccount(user);
MailAccountStatus status = WebmailHandler.GetMailAccountStatus(account);

116 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

StarCommunity.Modules.Webmail is described by clicking on their respective names. Make sure you also add the

mentioned assemblies as references, as mentioned in section 1.1.1.

Creating the Account

To create the account, we get the User for which the account is to be created, and then call the AddMailAccount

method in the WebmailHandler, specifying the local part of the address (the part before the “@” sign) to be associated

with the new account. Optionally you can also supply a Domain. If no domain is supplied, the one set in the

configuration file is used as the default.

The account is now created on the mail server, and incoming messages to this address will be accepted from this point

on.

It is important to note that the local part of the address has to be unique; it is therefore a good idea to think of some

means of making sure that collisions will not occur. For instance, the EPiServer Community username may be used (as

that is known to be unique), provided that it does not contain any illegal characters.

2.28.3 Disabling, Reactivating and Permanently Removing Accounts

It may be of interest to disable an account for different reasons or to remove an account entirely.

For instance, the mail account may be a premium service, which should be disabled if the user stops paying. Another

example may be a misbehaving user that should have their account removed.

Keep in mind that when a EPiServer Community user is soft-removed, reactivated or permanently removed, these

changes also reflect on the user’s mail account automatically, if there is one.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Webmail;

Domain domain = WebmailHandler.GetDomainByDomainName("my.domain");

IUser user = (IUser)StarCommunitySystem.

 CurrentContext.DefaultSecurity.GetUser(17);
WebmailHandler.AddMailAccount(user, "address.part", domain);

Tutorials | 117

© EPiServer AB

Import Necessary Namespaces

First, import the necessary namespaces that will be needed for this, the namespaces StarCommunity.Core,

StarCommunity.Core.Modules.Security and StarCommunity.Modules.VideoGallery

The StarCommunity.Modules.VideoGallery namespace contains classes for creating video galleries and uploading videos

for transcoding into a web friendly format, like Adobe Flash Video.

StarCommunity.Modules.Webmail are described by clicking on their respective names. Make sure you also add the

mentioned assemblies as references, as mentioned in section 1.1.1.

Soft Removing an Account

To disable an account, we get the account for the relevant user and call the SoftRemoveMailAccount method in the

handler. Note that this is automatically done when soft removing a user in the administration interface.

Now the account has been disabled. This means that no mail can be delivered to it and that you can no longer get mail

from this account.

Restoring a soft removed account

To reactivate a disabled account, we get the account for the relevant user and call the SoftRestoreMailAccount method

in the handler. Note that this is automatically done when restoring a user in the administration interface.

Now the account has been restored. Any messages which were there before the account was disabled are now

available again.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;
using StarCommunity.Modules.Webmail;

IUser user = (IUser)StarCommunitySystem.

 CurrentContext.DefaultSecurity.GetUser(17);
MailAccount account = WebmailHandler.GetMailAccount(user);

WebmailHandler.SoftRemoveMailAccount(account);

IUser user = (IUser)StarCommunitySystem.

 CurrentContext.DefaultSecurity.GetUser(17);
MailAccount account = WebmailHandler.GetMailAccount(user);

WebmailHandler.SoftRestoreMailAccount(account);

118 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

Permanently Removing an Account

To permanently remove an account, we get the account for the relevant user and call the RemoveMailAccount method

in the handler. Note that this is automatically done when permanently removing a user in the administration interface.

Now this account has been permanently removed. A new account would have to be added for this user to be able to

use Webmail functionality again.

2.28.4 Managing the Mailbox Tree for an Account

The mail server has a tree structure of mailboxes, in which the actual messages reside. You can create and remove

folders as you wish using the Webmail Module. Typically it may be of interest to create a “Sent” folder in which copies

of outbound messages can be saved.

Import Necessary Namespaces

First, import the necessary namespaces that will be needed. The namespaces StarCommunity.Core,

StarCommunity.Core.Modules.Security and StarCommunity.Modules.VideoGallery

The StarCommunity.Modules.VideoGallery namespace contains classes for creating video galleries and uploading videos

for transcoding into a web friendly format, like Adobe Flash Video.

StarCommunity.Modules.Webmail are described by clicking on their respective names. Make sure you also add the

mentioned assemblies as references, as mentioned in section 1.1.1.

Creating a Mailbox

To create a new mailbox, we get the mail account for the user, then the root mailbox which we will use as the base in

this example, and then call the AddMailbox method to have a new mailbox with the specified name created under the

given mailbox.

WebmailHandler handler = new WebmailHandler();
IUser user = (IUser)StarCommunitySystem.

 CurrentContext.DefaultSecurity.GetUser(17);

MailAccount account = WebmailHandler.GetMailAccount(user);
WebmailHandler.RemoveMailAccount(account);

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Webmail;

IUser user = (IUser)StarCommunitySystem.

 CurrentContext.DefaultSecurity.GetUser(17);
MailAccount account = WebmailHandler.GetMailAccount(user);

Mailbox root = account.RootMailbox;

WebmailHandler.AddMailbox("name", root);

Tutorials | 119

© EPiServer AB

Accessing a Mailbox

The mailboxes in an account form a tree structure. The root mailbox is the only one which is explicitly referenced from

the outside, but it is easy to get to any given mailbox using the ChildMailboxes property which is available on all

mailboxes.

This way, you can access a mailbox by its name, or you can iterate over the ChildMailboxes as a list, depending on your

needs.

2.28.5 Getting Messages

The centerpiece of any Webmail implementation is the messages. This article will show examples of how to access the

actual messages.

Import Necessary Namespaces

First, import the necessary namespaces that will be needed for this. The namespaces StarCommunity.Core,

StarCommunity.Core.Modules.Security and StarCommunity.Modules.VideoGallery

The StarCommunity.Modules.VideoGallery namespace contains classes for creating video galleries and uploading videos

for transcoding into a web friendly format, like Adobe Flash Video.

StarCommunity.Modules.Webmail are described by clicking on their respective names. Make sure you also add the

mentioned assemblies as references, as mentioned in section 1.1.1.

Getting a List of Messages

To get a list of messages, we first get the mail account of the user, we then call the GetMessages method in the

WebmailHandler, specifying the mailbox, the paging information (page size and page number to retrieve) and the sort

order.

IUser user = (IUser)StarCommunitySystem.

 CurrentContext.DefaultSecurity.GetUser(17);
MailAccount account = WebmailHandler.GetMailAccount(user);

Mailbox root = account.RootMailbox;

Mailbox subMailbox = root.ChildMailboxes["name"];

using StarCommunity.Core;
using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Webmail;

IUser user = (IUser)StarCommunitySystem.
 CurrentContext.DefaultSecurity.GetUser(17);

MailAccount account = WebmailHandler.GetMailAccount(user);

MessageSortOrder order =
new MessageSortOrder(MessageSortField.Date, SortDirection.Descending);

Mailbox mbox = account.RootMailbox;

int totalHits = 0;
MessageCollection messages = WebmailHandler.GetMessages(mbox, 1, 20, out

totalHits, order);

120 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

The returned MessageCollection now holds the first 20 messages from the specified mailbox. This collection can now

for example be iterated over to display a message listing, with all the appropriate information available.

Notes Regarding Handling of Received Messages

It is important to note that Message is the base class for ServerMessage (any message that has been retrieved from the

mail server) and LocalMessage (any message that is being constructed locally to be sent). Some properties specific to an

incoming message is only available when it is treated as a ServerMessage, so a cast may be necessary if the message is

for example taken from a MessageCollection.

It is also worth noting that accessing the TextBody, HTMLBody and Attachments properties of a ServerMessage

imposes significant overhead compared to other properties, as these require the full message to be transferred from the

mail server. Doing so also sets the message as read.

It is therefore not advisable to include these properties in message listings and similar if it can be avoided, but rather

only use those when displaying a complete individual message.

2.28.6 Sending a Message

Another very central part of any Webmail implementation is the possibility to send mail. In this article we will show a

basic example of how to send mail.

Import Necessary Namespaces

First, import the necessary namespaces that will be needed for this. The namespaces StarCommunity.Core,

StarCommunity.Core.Modules.Security and StarCommunity.Modules.VideoGallery

The StarCommunity.Modules.VideoGallery namespace contains classes for creating video galleries and uploading videos

for transcoding into a web friendly format, like Adobe Flash Video.

StarCommunity.Modules.Webmail are described by clicking on their respective names. Make sure you also add the

mentioned assemblies as references, as mentioned in section 1.1.1.

Sending a Message

First, we get the mail account of the sending user, we use the account to get the sender’s mail address, so that we can

set that as the From address. We then proceed by setting other properties of the LocalMessage object. To finally send

the message, we call SendMessage in the WebmailHandler.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Webmail;

IUser user = (IUser)StarCommunitySystem.

 CurrentContext.DefaultSecurity.GetUser(17);

MailAccount account = WebmailHandler.GetMailAccount(user);
LocalMessage message = new LocalMessage();

message.From = wh.GetMailAddress(account);

message.To.Add(new MailAddress("Name", "email@domain"));
message.TextBody = "Text version";

message.HTMLBody = "HTML version";

WebmailHandler.SendMessage(message);

Tutorials | 121

© EPiServer AB

Note that it is recommended to either have only TextBody set or to have both TextBody and HTMLBody set, this is

for maximum compatibility with different mail user agents.

2.28.7 The Configuration File

The configuration file for the Webmail Module requires custom values for the module to work as it relies on an

external mail server.

In this section we will go through the meaning of the different settings.

Parameter type Description

IMAPBaseFolder String Name of the base folder on the IMAP server. Typically

“INBOX”.

IMAPFolderSeparator String The folder separator on the IMAP server. Typically a single

dot (“.”).

IMAPPort Int The port number the IMAP server is listening on. Typically

143.

IMAPServer String The hostname or IP that the IMAP server is reachable at.

SMTPPort Int The port number the SMTP server is listening on. Typically

25.

SMTPServer String The hostname or IP that the SMTP server is reachable at.

UsernamePrefix String The prefix used for webmail IMAP account usernames.

Check with the server administrator.

WebserviceURL String The URL for the webservice used for creating accounts, etc.

Check with the server administrator.

AccountQuota Int Default IMAP account quota. In kilobytes.

WebserviceSecret String The shared secret used when communicating with the

webservice. Check with the server administrator.

IMAPAuthMode String The authentication mode used with the IMAP server.

Available are “plain” or “crammd5”.

DomainName String The domain name that will be used as the default domain

when adding webmail addresses.

DiskCachePath String The path to a folder dedicated to storing cached copies of

mail data. This folder must be writable to the Windows user

that runs the web application.

122 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

Extending EPiServer Community | 123

© EPiServer AB

3 Extending EPiServer Community

3.1 Extending EPiServer Community classes

This tutorial describes howto create a derived class with custom attributes, and that exposes those attributes as fixed

properties in the derived class. This is in many cases a more elegant approach than accessing the attributes directly via

the attribute name.

In this tutorial we assume that we have a community implementation that requires the EntryComment class in Blog to

have an ImageGallery connected to it, where users can upload pictures when commenting an Entry. One way of

accomplishing this would of course be to just add an attribute to the EntryComment as described in section 2.5 and be

done with it. However, there is a more elegant way to use attributes without the need of keeping track of the attribute

names in your ASP.NET page.

We start by creating a new class derived from EntryComment.

using System.Collections.Generic;

using StarCommunity.Modules.Blog;

using StarCommunity.Modules.ImageGallery;

namespaceMyCommunity

{
 //Inherit the EntryComment class

 public class MyEntryComment : EntryComment

 {
 // The constructor takes DbDataReader and passes it to base class

 public MyEntryComment(DbDataReader reader) : base(reader) { }

 // Define the ImageGallery property for get and set

 public ImageGallery ImageGallery

 {
 get{return this.getAttributeValue<ImageGallery>("attr_ig");}

set{blog.entity.SetAttributeValue<ImageGallery>("attr_ig",value));}

 }
 }

}

124 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

In order to make EPiServer Community aware of this new type so instances of the type can be returned, we need to

create an EntityProvider.This is done by creating a new class, implementing IEntityProvider in the StarSuite.Core.Data

namespace.

using System.Collections.Generic;

using StarSuite.Core.Data;

using StarCommunity.Modules.Blog;
using StarCommunity.Modules.ImageGallery;

namespace MyCommunity
{

 //Implement the IEntityProvider interface

 public class MyEntryCommentEntityProvider :
StarSuite.Core.Data.IEntityProvider

 {

private static MyEntryCommentEntityProvider m_myEntryCommentEntityProvider =
null;

 //Singleton
 public static StarSuite.Core.Data.IEntityProvider GetProviderInstance()

 {

 if (m_myEntryCommentEntityProvider == null)
 m_myEntryCommentEntityProvider = new MyEntryCommentEntityProvider

();

 return m_myEntryCommentEntityProvider;

 }

 // Override the GetEntityInstance by reader method

public object GetEntityInstance(Type type, DbDataReader reader)

 {
 //If the specified type is EntryComment or MyEntryComment, call

 //MyEntryComment constructor that will just pass the reader

argument to
 //its base class

 if (type == typeof(EntryComment) || type == typeOf(MyEntryComment)

 return new MeEntryComment(reader);
 }

 // Override the GetEntityInstance by id method
 public object GetEntityInstance(Type type, int id)

 {

 //If the specified type is EntryComment or MyEntryComment, just get
 //EntryComment by id via BlogHandler

if (type == typeof(EntryComment) || type == typeOf(MyEntryComment)

 return BlogHandler.GetEntryComment(id);
 }

}

}

Extending EPiServer Community | 125

© EPiServer AB

Now, we have created our entity provider that can return instances of your new type MyEntryComment. Only one

more thing remains and that is to register it in the EntityProvider.config, so EPiServer Community knows that this entity

provider should override the existing one for EntryComments.

All request for the type StarCommunity.Modules.Blog.EntryComment and MyCommunity.MyEntryComment will now

be run through MyEntryCommentEntityProvider.

Below is an example where we get the images from the image gallery property in MyEntryComment class.

<EntityProvider>

<Name>MyCommunity.MyEntryCommentEntityProvider, MyCommunity</Name>

<SupportedTypes>
 <SupportedType>

<Name>MyCommunity.MyEntryProvider, MyCommunity</Name>

</SupportedType>
<SupportedType>

<Name>StarCommunity.Modules.Blog.EntryComment,

StarCommunity.Modules.Blog</Name>
</SupportedType>

</SupportedTypes>

</EntityProvider>

using StarCommunity.Modules.Blog;

using MyCommunity;

//Get an entry comments

MyEntryComment comment = (MyEntryComment)BlogHandler.GetEntryComment(1234);
ImageCollection ic =

 comment.ImageGallery.GetImages(1, 20, out totalHits,

 new ImageSortOrder(ImageSortField.Order, SortDirection.Ascending));

126 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

3.2 Benefit from EPiServer Community functionality in third party classes

Third part classes can benefit from EPiServer Community functionality by inheriting the StarCommunityEntityBase class

or implementing its interfaces. This tutorial describes the creation of a third party class, MyClass, which inherits the

StarCommunityEntityBase class in the StarCommunity.Core.Modulesnamespace. StarCommunityEntityBase requires that

a unique id for the type is passed to its constructor and gives inheriting classes the properties and methods for

EPiServer Community Categories, Tags, Attributes and Rating.

using StarCommunity.Core.Modules;

namespace MyCommunity

{

 //Inherit the StarCommunityEntityBase class
 public class MyClass : StarCommunityEntityBase

 {

private string m_name;

 public MyClass(int id, string name) : base(id)

 {
 m_name = name;

}

 public string Name

 {

 get{return m_name;}
 set{m_name = value;}

 }

 }

}

Extending EPiServer Community | 127

© EPiServer AB

In EPiServer Community there is a handler for every module, whichcontains the methods, which in turn does the

database communication. In this example we create one for MyClass. It will be used in the entity provider (see 1.2.4) to

get a MyClass instance from ID.This is necessary for EPiServer Community to handle this type properly. However, this

particular method may be implemented in any way you wish, just as long as it returns and instance of MyClass based on

ID.

namespace MyCommunity

{

 public class MyClassHandler
 {

 //In reality, this method would probably involve a database query to

create
 //the object from database.

 public static GetMyClass(int id)

 {
 return new MyClass(id, "myclass name");

 }

 }

}

128 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

Since there aremethods in EPiServer Community that returns collections of entities (e.g. CategorizedEntityCollection),

EPiServer Community needs to recognize the new MyClass type. We need to create an EntityProvider for MyClass.

using System.Collections.Generic;

using StarSuite.Core.Data;

using MyCommunity;

namespace MyCommunity

{
 //Implement the IEntityProvider interface

 public class MyClassEntityProvider : StarSuite.Core.Data.IEntityProvider

 {
 private static MyClassEntityProviderm_myClassEntityProvider = null;

 //Singleton
 public static StarSuite.Core.Data.IEntityProvider

GetProviderInstance()

 {
 if (m_myClassEntityProvider == null)

 m_myClassEntityProvider = new MyClassEntityProvider ();

 return m_myClassEntityProvider;

 }

 // Implement the GetEntityInstance by reader method

 //to construct your object from database

 public object GetEntityInstance(Type type, DbDataReader reader)
 {

 if (type == typeof(MyClass)

 return new MyClass(reader.GetInt32(0),
reader.GetString(1));

 }

 // Implement the GetEntityInstance by id method

 public object GetEntityInstance(Type type, int id)

 {

 if (type == typeof(MyClass)

 return MyClassHandler.GetMyClass(id);
 }

 }

}

Now we may use the category system to categorize objects of type MyClass

Extending EPiServer Community | 129

© EPiServer AB

Categorize MyClass entities

Since MyClass is derived from StarCommunityEntityBase, you may use the category system directly as you would with

any other EPiServer Community class. Here we have some examples of an Add and Update method for MyClass,

notice that after running the MyClass database-query we call the UpdateEntity method of the base class, which is

StarCommunityFactoryBase.

using StarCommunity.Core.Modules.Data;

using StarCommunity.Core.Modules.Categories;
using MyCommunity;

....

//Get an instance of MyClass via id

MyClass myClass = MyClassHandler.GetMyClass(1);

//Get a category by id

Category category = CategoryHandler.GetCategory(1);

//Add the category

myClass.Categories.Add(category);

MyClassHandler.UpdateMyClass(myClass);

....

public class MyClassHandler :

 StarCommunity.Core.Modules.Data.StarCommunityFactoryBase

{

// inserting the data

public static void AddMyClass(MyClass mc)
{

bool inTransaction = DatabaseHandler.InTransaction;

if (!inTransaction)
DatabaseHandler.BeginTransaction();

 try
{

int newId = Convert.ToInt32(DatabaseHandler.

GetScalar(true, "spAddMyClass", parameters));

base.UpdateEntity(mc, newId);

if (!inTransaction)

DatabaseHandler.Commit();

}
catch (Exception)

{

if (!inTransaction)
DatabaseHandler.Rollback();

throw;
}

 }

130 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

UpdateEntity saves all categories, tags, attributes and rating settings on MyClass. UpdateEntity has two overloads, during

an insert we call the overload where we can pass the new id, since it’s not in our object at the moment, and when we

do an update, we simply only pass the “mc” variable. This is important to remember, since when passing an ID some

initialization may occur which is unnecessary during an update, so keep track of which overload you call.

3.2.1 Retrieving categories for MyClass

To get a collection of all categories connected to an entity, you just call the Categories property on the categorizable

entity MyClass just as for any EPiServer Community object.

//Get the MyClass to check for categories
MyClass myClass = MyClassHandler.GetMyClass(1);

//Get the categories for the blog
CategoryCollection categoryCollection = myClass.Categories;

// updating the data

public static void UpdateMyClass(MyClass mc)
{

bool inTransaction = DatabaseHandler.InTransaction;

if (!inTransaction)
DatabaseHandler.BeginTransaction();

 try
{

DatabaseHandler.

 ExecuteNonQuery(true, "spUpdateMyClass", parameters));

base.UpdateEntity(mc);

if (!inTransaction)

DatabaseHandler.Commit();

}
catch (Exception)

{

if (!inTransaction)
DatabaseHandler.Rollback();

throw;
}

 }

}

Extending EPiServer Community | 131

© EPiServer AB

3.2.2 Retrieving MyClass entities based on categories

Just as for EPiServer Community objects, you may retrieve collections of categorized MyClass entities via the category

handler.

3.3 Use EPiServer Community Cache system for third party
implementations

The EPiServer Community cache system is located in the StarSuite.Core.Cache namespace. The main class being the

CacheHandler, retrieves and stores caches, keeps track of dependencies and synchronizes events over a webserver

cluster. Every object cached in this system can (if chosen to be implemented) be identified by its primary cache key. The

cache system is set to detect this primary cache key in any lists or collections it has in its cache tree, hence removing the

cache by its primary cache key would also remove the cached lists containing it.

The primary cache key is definied by implementing the ICacheable interface and its CacheKey property.

Every part added to the key represents going deeper into the tree-structure, which means if “tree”, “branch” would

be removed, all leafs under it will go with it.

The following code sample shows how the dependencies are automatically being registered when the containing “co”

instance is in the cached list. RemoveCachedObject will also remove the list from the cache.

//Get the category for which we want entities
Category category = CategoryHandler.GetCategory(1);

//Add the category to the category collection
CategoryCollection categoryCollection = new CategoryCollection();

categoryCollection.Add(category);

//Get entities of type MyClass that have been categorized with category

int totalItems = 0;

CategorizableEntityCollection categorizedEntities =
 CategoryHandler.GetCategorizedItems(typeof(MyClass),

 categoryCollection, 1, 10, out totalItems);

public class CachedClass : StarSuite.Core.Cache.ICacheable
{

 private int m_id;

 public CachedClass(int id)
{

 m_id = id;

}

 public string[] CacheKey

 {
 get { return new string[] { "tree", "branch", "leaf",

 id.ToString() }; }

 }
}

132 | Developer’s Guide EPiServer Community 3.1

© EPiServer AB

Having this is mind and implementing it in a third-party solution can save a lot of time and boost performance of

features implemented into the EPiServer Community platform.

List<CachedClass> list = new List<CachedClass>();

CachedClass co = new CachedClass(1234);
list.Add(co);

CacheHandler.SetCachedObject(list, “tree”, “branch”, “leaflist”);

CacheHandler.RemovedCachedObject(co);

