

 StarCommunity 3

A Programmer’s Guide

StarCommunity - A Programmer’s Guide, v. 3.0 | Copyright 2005-2007 Netstar AB

Netstar AB | Box 3415 | 103 68 Stockholm | Sweden
Phone: +46 (0)8 5000 98 70 | Fax. +46 (0)8 5000 98 71 | E-mail: products@netstar.se | Web site: www.netstar.se

StarCommunity -

Building Relationships

 2 (133)

Table of Contents

Table of Contents .. 2
1. Basic Understanding .. 6

1.1. Getting Started .. 6
1.1.1. Setting up Visual Studio .. 6
1.1.2. What is the role of StarCommunity in an ASP.NET page? ... 6

1.2. Netstar Design Concept and Similarities ... 7
1.2.1. Required Framework Componenta ... 7
1.2.2. StarCommunity Entity Interfaces .. 9
1.2.3. StarCommunity Core Modules .. 9
1.2.4. StarCommunity EntityProviders .. 13
1.2.5. StarCommunity AttributeDataTypeProviders .. 14

1.1. Namespaces .. 17
1.2.6. StarSuite.Core .. 17
1.2.7. StarSuite.Core.Cache ... 17
1.2.8. StarSuite.Core.Data .. 17
1.2.9. StarSuite.Core.Modules .. 18
1.2.10. StarSuite.Core.Globalization .. 18
1.2.11. StarSuite.Core.Modules.Security .. 18
1.2.12. StarCommunity.Core .. 18
1.2.13. StarCommunity.Core.Modules .. 18
1.2.14. StarCommunity.Core.Modules.Security ... 18
1.2.15. StarCommunity.Core.Modules.Tags... 19
1.2.16. StarCommunity.Core.Modules.Rating .. 19
1.2.17. StarCommunity.Core.Modules.Categories ... 19
1.2.18. StarCommunity.Core.Modules.Attributes ... 19
1.2.19. StarCommunity.Core.Modules.Queries .. 19
1.2.20. StarCommunity.Modules.Blog .. 19
1.2.21. StarCommunity.Modules.Calendar ... 19
1.2.22. StarCommunity.Modules.Chat .. 19
1.2.23. StarCommunity.Modules.Club .. 20
1.2.24. StarCommunity.Modules.ConnectionLink .. 20
1.2.25. StarCommunity.Modules.Contact ... 20
1.2.26. StarCommunity.Modules.Contest ... 20
1.2.27. StarCommunity.Modules.DirectMessage ... 20
1.2.28. StarCommunity.Modules.DocumentArchive ... 20
1.2.29. StarCommunity.Modules.Expert ... 20
1.2.30. StarCommunity.Modules.Forum ... 20
1.2.31. StarCommunity.Modules.ImageGallery .. 20
1.2.32. StarCommunity.Modules.Moblog .. 20
1.2.33. StarCommunity.Modules.Moblog.ContentProviders.Unwire .. 20
1.2.34. StarCommunity.Modules.MyPage .. 21
1.2.35. StarCommunity.Modules.NML .. 21
1.2.36. StarCommunity.Modules.OnlineStatus ... 21
1.2.37. StarCommunity.Modules.Poll ... 21
1.2.38. StarCommunity.Modules.StarViral .. 21
1.2.39. StarCommunity.Modules.Webmail ... 21

2. Tutorials.. 22
2.1. User Management ... 22

1.2.40. Adding a User ... 22
1.2.41. Authenticating a User ... 23
1.2.42. Getting the Currently Logged in User ... 24
1.2.43. Removing a User .. 24
1.2.44. Restoring a User ... 25

 3 (133)

1.2.45. Adding a User for Activation ... 26
1.2.46. Adding a User to a Group ... 27

2.2. Tags ... 29
2.2.1. Tagging an entity .. 29
2.2.2. Retrieving the tags of an entity ... 29
2.2.3. Removing a tag from an entity .. 30
2.2.4. Retrieving a tag cloud ... 30
2.2.5. Implementing tag functionality on other classes ... 30

2.3. Rating .. 31
2.3.1. Rating an entity ... 31
2.3.2. Examine if a entity is already rated by an user ... 31
2.3.3. Retrieving ratings for an entity .. 31
2.3.4. Retrieving entities based on average rating ... 32

2.4. Categories ... 32
2.4.1. Add a category .. 32
2.4.2. Removea category .. 32
2.4.3. Categorize an entity .. 33
2.4.4. Retrieving categories for an entity .. 33
2.4.5. Retrieving entities based on categories .. 33

2.5. Attributes.. 34
2.5.1. Setting attribute values ... 34
2.5.2. Getting attribute values ... 34

2.6. Queries .. 35
2.6.1. Filter and and sort StarCommunity objects... 35
2.6.2. Filter on custom attributes .. 36
2.6.3. Using And / Or conditions ... 36

2.7. Blog .. 38
2.7.1. Adding a Blog .. 38
2.7.2. Removing a Blog ... 38
2.7.3. Changing blog properties .. 39
2.7.4. Adding a Blog Entry .. 39
2.7.5. Adding a Blog Entry with Future Publication Date .. 40
2.7.6. Getting Blog Entries .. 41
2.7.7. Commenting on a Blog Entry .. 42

2.8. Calendar .. 44
2.8.1. Adding a Calendar .. 44
2.8.2. Removing a Calendar ... 44
2.8.3. Remove a Calendar .. 45
2.8.4. Adding an Event .. 45
2.8.5. Adding a Recurring Event ... 46
2.8.6. Inviting Users to an Event ... 48
2.8.7. Registering upon an Event Invitation .. 49

2.9. Chat ... 51
2.9.1. Implementing the Chat Applets on an ASP.NET page ... 51
2.9.2. Base .. 53
2.9.3. ChatWindow .. 53
2.9.4. UserList ... 54
2.9.5. MessageBox ... 54

2.10. Club ... 56
2.10.1. Adding a Club ... 56
2.10.2. Removing a Club .. 57
2.10.3. Adding Club Members .. 57
2.10.4. Adding Club Ads ... 58
2.10.5. Setting Club Keywords ... 59

2.11. ConnectionLink .. 61
2.11.1. Getting the Shortest Path ... 61

2.12. Contact .. 62
2.12.1. Adding a Contact Relation .. 62

 4 (133)

2.12.2. Removing a Contact Relation ... 63
2.12.3. Approving a Contact Relation ... 64
2.12.4. ContactRelationCollections and Perspectives. ... 66
2.12.5. Configuration File .. 68

2.13. Contest .. 69
2.13.1. Get Contests ... 69
2.13.2. Get Contest Questions ... 69
2.13.3. Add Contest Submission .. 70
2.13.4. Get winners ... 71

2.14. DirectMessage ... 72
2.14.1. Send a Message ... 72
2.14.2. Removing Messages .. 73
2.14.3. Listing Messages in Folders ... 74
2.14.4. Flag a Message as read .. 75

2.15. Document Archive ... 77
2.15.1. Add a Document Archive .. 77
2.15.2. Remove a Document Archive ... 77
2.15.3. Add a Document ... 78
2.15.4. Update a Document .. 79
2.15.5. Remove a Document .. 80
2.15.6. Configuration File .. 80

2.16. Expert .. 81
2.16.1. Add an Expert ... 81
2.16.2. Add a Member Expert ... 81
2.16.3. Remove an Expert .. 82
2.16.4. See if a User is an Expert ... 83
2.16.5. Add a Question ... 84
2.16.6. Assign a Question ... 85
2.16.7. Answer a Question.. 85
2.16.8. Approve an Answer... 86
2.16.9. Get Questions Assigned to an Expert .. 87
2.16.10. Get Question Answers .. 87

2.17. Forum .. 89
2.17.1. Adding a Forum .. 89
2.17.2. Adding a Topic .. 89
2.17.3. Locking a Topic ... 90
2.17.4. Removing a Topic ... 91
2.17.5. Moving a Topic .. 91
2.17.6. Adding a Reply .. 92
2.17.7. Removing a Reply... 92

2.18. Image Gallery .. 94
2.18.1. Adding an Image Gallery .. 94
2.18.2. Removing an Image Gallery ... 94
2.18.3. Adding an Image ... 95
2.18.4. Removing an Image .. 96
2.18.5. Crop and Rotate an Image ... 96
2.18.6. Getting a Thumbnail of an Image ... 98
2.18.7. Getting Images in an Image Gallery ... 98

2.19. Moblog ... 100
2.19.1. Redirecting an Unwire MMS to a Specific Destination ... 100

2.20. MyPage ... 102
2.20.1. Blocking a User ... 102
2.20.2. Seeing if a User is Blocked ... 102
2.20.3. Getting Blocked Users .. 103
2.20.4. Setting a Portrait Image .. 104

2.21. NML ... 106
2.21.1. Rendering NML Content ... 107
2.21.2. Limiting Maximum Word Lengths ... 108

 5 (133)

2.22. OnlineStatus .. 109
2.22.1. Seeing if a User is Online ... 109
2.22.2. Getting a User’s Last Login Date .. 109
2.22.3. Getting Currently Logged in Users ... 110

2.23. Poll ... 111
2.23.1. Adding a Poll ... 111
2.23.2. Removing a Poll .. 112
2.23.3. Voting in a Poll .. 112
2.23.4. Display the Current State of a Poll.. 113
2.23.5. Adding Choices after Creation .. 114
2.23.6. Add Choices to Existing Poll ... 115

2.24. StarViral ... 116
2.24.1. Adding a Referral .. 116
2.24.2. Display the State of Referrals ... 116

2.25. Webmail ... 118
2.25.1. Getting the status of an account ... 118
2.25.2. Creating an account .. 118
2.25.3. Disabling, Reactivating and Permanently Removing Accounts 119
2.25.4. Managing the Mailbox Tree for an Account .. 120
2.25.5. Getting Messages ... 121
2.25.6. Sending a Message .. 122
2.25.7. The Configuration File .. 124

3. Extending StarCommunity ... 125
3.1. Extending StarCommunity classes .. 125
3.2. Benefit from StarCommunity functionality in third party classes ... 128

3.2.1. Categorize MyClass entities ... 129
3.2.2. Retrieving categories for MyClass .. 131
3.2.3. Retrieving MyClass entities based on categories ... 131

3.3. Use Netstar Cache system for third party implementations .. 132

 6 (133)

1. Basic Understanding

1.1. Getting Started

1.1.1. Setting up Visual Studio

After the installation of StarCommunity onto a Visual Studio Web Project the following steps

needs to be taken.

 Add the necessary entries in the Global.asax.cs file mentioned in the

Installation Manual under “EPiServer specific instructions”. This also applies to

regular Web Projects not running EPiServer.

 Add all assemblies as a reference to the project. Especially in Visual Studio 2005

this is of great importance, since on a rebuild, Visual Studio will delete all unused

assemblies from the bin directory.

1.1.2. What is the role of StarCommunity in an ASP.NET page?

StarCommunity is the backbone of a community. It is the API that retrieves and stores data

using an object oriented structure and with high performance. The ASP.NET webpage comes

into the picture when you want a way to display and input this data, which means,

StarCommunity does not give you the set of web pages that makes up a community but it

allows you to create them with full customizability in quicker and more stable way than you

could do by coding a community from scratch.

 7 (133)

1.2. Netstar Design Concept and Similarities

The Netstar framework design is written in such a way that developers will recognize the structure

and immediately start development in new areas based on previous experience of StarCommunity

development.

Classes that commit and retrieve data all end with “Handler”, e.g. SiteHandler.

Committing data consists of methods starting with “Add”, “Update” and “Remove”.

Entity classes that hold data never contains methods for commiting data.

Handler classes contain events for most common methods, like adding, removing and

updating data.

1.2.1. Required Framework Componenta

StarCommunity depends on a set of common classes, called “Required Framework

Components” that reside in the StarSuite-namespace. These classes handle what is

common between Netstar products, like site partitioning and security and access rights. The

later is described in the figure below.

 8 (133)

A Netstar product like StarCommunity is actually a module of Required Framework

Components and when a web site is started it is these components that set up the necessary

environment, loads the environment modules and provides a module context.

 9 (133)

1.2.2. StarCommunity Entity Interfaces

The StarCommunity Entity Interfaces allows for developers to benefit from StarCommunity

functionality such as Rating, Categorization, Tags, Cacheing, Attributes and Queries.

1.2.3. StarCommunity Core Modules

Included in the StarCommunity Core are several modules. The modules are Security, Tags,

Rating, Categories, Attributes and Queries. These modules contains interfaces and classes

that can be used throughout the StarCommunity system and also for third party classes that

wish to benefit from this functionality.

 10 (133)

StarCommunity.Core.Modulse.Tags

Tags enable users to organize their content (often for the public) by tagging it with a

certain word or phrase. All tags can then be merged into a Tag Cloud where tags are

shown with different weight depending on the popularity. To use Tags, the class must

implement the ITaggableEntity interface provided by StarCommunity Framework. The Tag

system itself contains helper classes as shown in figure below. Coding samples using

tags are found under the tutorial section in this document.

StarCommunity.Core.Modules.Rating

Rating enable developers to implement rating functionality for all classes that implements

the IRatableEntity interface. Rated objects can be rated and retrieved based on their

average rating. The rating system itself contains helper classes as shown in figure below.

Coding samples using rating are found under the tutorials section in this document.

StarCommunity.Core.Modules.Categories

Categories enable developers to implement categorization functionality for all classes that

implement the ICategorizableEntity. Interface. Categories can be either user defined or

pre-defined and are stored in a tree structure. An Object can be categorized by binding

 11 (133)

one or many categories to it and objects may then be retrieved based on their categories.

Examples of content commonly categorized are Images, Blogs and Messages. The

category system itself contains helper classes as shown in the figure below. Coding

samples using Categories are found under the tutorial section in this document.

StarCommunity.Core.Modules.Attributes

Attributes enable developers to add custom attributes and attribute values of both

primitive and complex types for all classes that implements

IAttributeExtendableEntityinterface. Attributes together with Queries makes

StarCommunity a very flexible development platform, which allows system architects and

developers to extend the core community functionality to meet highly specialized

requirements.

In its simplest form, attributes are used directly on existing StarCommunity objects in an

ASP.NET page by using the Set/GetAttributeValue methods. The following code sets and

gets an attribute named “forum_attribute” to the value of a forum instance for a

StarCommunity.Modules.ImageGallery.ImageGallery object.

imageGallery.SetAttributeValue<Forum>(“forum_attribute", forum);

forum = imageGallery.GetAttributeValue<Forum>(“forum_attribute”);

In this approach the developer needs to keep track of the strings representing the

attribute, which can be ok for systems with minor use of custom attributes. However, a

more object-oriented approach is to create a new class that inherits

StarCommunity.Modules.ImageGallery.ImageGallerywith a fixed forum

property.

The attribute system also enables the possibility to have third party classes as attributes

to StarCommunity classes and have StarCommunity classes as attributes to third party

classes.However, to use attributes in any other way than the simplest form described

above, you need to define your own EntityProviders and AttributeDataTypeProviders to

register new data types in the StarCommunity context. EntityProviders are described in

section 1.2.4.

The attribute system itself contains helper classes as shown in the figure below. Coding

samples using Attributes are found in the section 0.

 12 (133)

StarCommunity.Core.Modules.Queries

Queries enables developers to get filtered collections of objects that have their database

properties mapped in a configuration file and have a criterion class that is derived from

CriterionBase and where the criterion class defines the filterable fields. All relevant

StarCommunity classes are ready for filtering and retrieval. Coding samples using Queries are

found in section 0.

The query system is described in the figure below usingStarCommunity.Modules.Blogas

an example.

 13 (133)

1.2.4. StarCommunity EntityProviders

An EntityProvideris a singleton class that

implementsStarSuite.Core.Data.IEntityProviderand is responsible for returning

instances of a specific type based on a DbDataReader or a unique ID. EntityProviders are

already defined for all relevant StarCommunity classes.

Custom EntityProviders are necessary to define whenever third party classes are introduced

in the StarCommunity context (For example custom classesthat inherits StarCommunity

classes or implements StarCommunity interfaces). The following code snippets shows how to

define a custom EntityProvider for the example custom class MyImageGallerythat inherits

StarCommunity.Modules.ImageGallery.ImageGallery.

public class MyImageGalleryEntityprovider : IEntityProvider

...

public object GetEntityInstance(Type type, DbDataReader reader)

{

 if(type == typeof(ImageGallery) || type == typeOf(MyImageGallery)

return new MyImageGallery(reader);

}

...

public object GetEntityInstance(Type type, int Id)

{

if(type == typeof(ImageGallery) || type == typeOf(MyImageGallery)

return ImageGalleryHandler.GetImageGallery(id);

}

Now, we need to add theExample.MyImageGalleryEntityProviderto the

EntityProvider.config file and thus override the ImageGalleryEntityProvider:

<EntityProvider>

<Name>Exempel.MyImageGalleryEntityProvider, Example</Name>

<SupportedTypes>

<SupportedType>

<Name>Example.MyImageGallery, Example</Name>

</SupportedType>

<SupportedType>

<Name>StarCommunity.Modules.ImageGallery.ImageGallery,

 StarCommunity.Modules.ImageGallery</Name>

</SupportedType>

</SupportedTypes>

</EntityProvider>

 14 (133)

From now on, all requests for instances of the type Example.MyImageGallery and

StarCommunity.Modules.ImageGallery.ImageGallery will be run through

Example.MyImageGalleryEntityProvider and thus return an object of the

Example.MyImageGallerytype. Coding examples for creating entities are found in section

3.

1.2.5. StarCommunity AttributeDataTypeProviders

An AttributeDataTypeProvider is a singleton class that

implementsStarCommunity.Core.Modules.Attributes.DataTypes.IAttributeDat

aTypeProvider. An AttributeDataTypeProvideris responsible for returning

IAttributeDataType instances made to handle a certain type. The

IAttributeDataType should be able to translate this type into a primitive type that can be

stored in the database.All relevant StarCommunity classes have AttributeDataTypeProviders

defined. Custom AttributeDataTypeProviders are necessary to define whenever a custom

datatypeis createdthat is used as a value for attributes.The following code snippets shows

how to define a custom AttributeDataTypeProvider for the example custom class

MyClass.

First we create the AttributeDataTypeProvider giving MyClass as a supported type.

When GetDataTypeInstance is called with MyClass as the type argument, we take the

primitive data type values and create an instance of our AttributeDataType class.

public class BlogAttributeDataTypeProvider

 : IAttributeDataTypeProvider

 {

 private static MyClassAttributeDataTypeProvider m_instance;

 private MyClassAttributeDataTypeProvider()

 {

 }

 #region IAttributeDataTypeProvider Members

 public Type[] SupportedTypes

 {

 get

 {

 return new Type[] { typeof(MyClass) };

 }

 }

 public IAttributeDataType

 15 (133)

GetDataTypeInstance(TypecomplexType, List<object> dbValues)

 {

 if (complexType == typeof(MyClass))

 return new MyClassAttributeDataType(dbValues);

 else

 throw new NotSupportedException(String.Format("The

type '{0}' is not supported by this provider.",

complexType.ToString()));

 }

 public static IAttributeDataTypeProvider

GetProviderInstance()

 {

 if (m_instance == null)

 m_instance =

new MyClassAttributeDataTypeProvider();

 return m_instance;

 }

 #endregion

 }

If MyClass implements IStarCommunityEntity we can

inheritComplexAttributeDataTypeBase<>, which basically does all the work for us, we

just define the complex datatype.

public class MyClassAttributeDataType :

ComplexAttributeDataTypeBase<MyClass>

{

public MyClassAttributeDataType(List<object> dbValues)

: base(dbValues, null, null)

 {

 }

}

 16 (133)

If MyClass does not implement IStarCommunityEntity we inherit

AttributeDataTypeBase, and we will have to do the conversion process on our own.

public class MyClassAttributeDataType : AttributeDataTypeBase

{

public MyClassAttributeDataType(List<object> dbValues)

 : base(dbValues, typeof(MyClass), typeof(Int32), null,

null) {

 }

public override List<object> Values

 {

 get

 {

 List<object>objs = new List<object>();

 foreach (int id in DbValues)

 {

MyClass mc = MyClassHandler.GetMyClass(id);

 if (mc != null)

objs.Add(mc);

 }

 return objs;

 }

 set

 {

 if (value == null)

 throw new ArgumentNullException("value");

 List<object> dbValues = new List<object>();

 foreach (MyClassmc in value)

 dbValues.Add(mc.ID);

 DbValues = dbValues;

 }

 }

}

 17 (133)

Now, when we update an IAttributeExtendableEntity with an attribute of type

MyClass, the MyClassAttributeDataType class will do the conversion.

1.1. Namespaces

1.2.6. StarSuite.Core

The StarSuite.Core namespace contains important startup classes like Settings, Site and

SiteHandler and takes care of loading modules in the correct order based on dependencies.

1.2.7. StarSuite.Core.Cache

The StarSuite.Core.Cache namespace contains the Netstar Cache system. The cache is

based on a tree-structure with the ability to have dependencies between branches. Every
cached object in products like StarCommunity implements the ICacheable interface, allowing
an object to have a primary cache key. The cache then keeps track of changes to this cache
key and released other caches that also contain this object. All these features in conjunction
make the Netstar cache a lot more precise than in previous versions.

The new cache system also implements the policy of read-only objects in cache. This is a big
change since previous versions, since now objects retrieved from methods needs to be cloned
before any properties are updated. All StarCommunity entities have a Clone() method that will
return a writable copy of the object.

1.2.8. StarSuite.Core.Data

The StarSuite.Core.Data namespace contains the database communication layer. It is called
by all Factory classes to open connections and transactions and makes it possible to run
several method calls within one transaction.

bool alreadyInTransaction = DatabaseHandler.InTransaction;

if(!alreadyInTransaction)

DatabaseHandler.BeginTransaction();

try

{

 // execute a series of methods,

 // they will all be in the same transaction

 AddUser();

 SetAccessRights();

 // we are only responsible for commiting the transaction

 // if we were the ones to start it

 if(!alreadyInTransaction)

 DatabaseHandler.Commit();

} catch

{

 if(!alreadyInTransaction)

 DatabaseHandler.Rollback();

 throw;

}

 18 (133)

1.2.9. StarSuite.Core.Modules

The StarSuite.Core.Modules namespace contains the classes and interfaces necessary

for creating modules. To give an example of a module StarCommunity is actually one of them.
And further down the module tree StarCommunity has its own modules.

1.2.10. StarSuite.Core.Globalization

The StarSuite.Core.Globalization namespace contains logic for retrieving and

storing globalized and localized text strings that can be used on a web site of different
languages.

// Get the translated text for the currently set culture

string t = GlobalizationHandler.GetTranslation("translation_key");

1.2.11. StarSuite.Core.Modules.Security

The StarSuite.Core.Modules.Security namespace contains the interfaces for users, groups
and access rights. The logic is then implemented in different assemblies depending on data

source. The StarSuite.Security.Internal.dll assembly (shipped with the

installation) is an implementation of StarSuite.Core.Modules.Security that uses the

SQL Server database as a source. By creating your own SecurityHandler the choosen

data source would be without limits.

1.2.12. StarCommunity.Core

The StarCommunity.Core namespace contains the important StarCommunitySystem

and StarCommunityContext classes that gives developers access to the StarCommunity

SecurityHandler.

// Get the sql connection string from the starcommunity context

string cs = StarCommunitySystem.CurrentContext.SqlConnectionString;

1.2.13. StarCommunity.Core.Modules

This namespace contains the interface IStarCommunityEntity and the abstract

implementation classStarCommunityEntityBase. IStarCommunityEntity implements

the blueprint for tagging, attributes, rating and categorization. Also the Author classes and
interfaces are located here, allowing for guests and users to identify themselves when making
posts.

1.2.14. StarCommunity.Core.Modules.Security

The StarCommunity.Core.Modules.Security namespace contains extended interfaces

based on theStarSuite.Core.Modules.Securitynamespace. Extensions include

imlementation of IStarCommunityEntity on users and groups and the ability to store

users for later activation by e-mail etc. The assembly

StarCommunity.Security.Internal.dll is an implementation of this that uses the SQL

Server database as a data source.

// Get the currently logged in user. DefaultSecurity should be

// StarComunity.Security.Internal.SecurityHandler since no other

// handler is installed.

 19 (133)

IUser u = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.CurrentUser;

1.2.15. StarCommunity.Core.Modules.Tags

This namespace contains the Tags core module whose functionality spans over all the
StarCommunity modules, and optionally it may extend to third party modules as well. It allows

for tagging an entity of any type (implementing the ITaggableEntity interface) with a tag. A

tag cloud may then be generated for the tags globally or by site and/or type
 See the section 0 for implementation details.

1.2.16. StarCommunity.Core.Modules.Rating

This namespace contains the Rating core module whose functionality spans over all the
StarCommunity modules, and optionally it may extend to third party modules as well. It allows

for rating an entity of any type (implementing the IRatableEntity interface) providing a

rating value. Entities may then be retrieved based on their average rating.
See section 2.3 for implementation details.

1.2.17. StarCommunity.Core.Modules.Categories

This namespace contains the Categories core module whose functionality spans over all the
StarCommunity modules, and optionally it may extend to third party modules as well. It allows

for categorizing an entity of any type (implementing the ICategorizableEntity interface)

providing one or many categories. Entities may then be retrieved based on their
categorization.See section 2.4 for implementation details.

1.2.18. StarCommunity.Core.Modules.Attributes

This namespace contains the Attributes core module whose functionality spans over all the
StarCommunity modules, and optionally it may extend to third party modules as well. It allows
for binding attribute values of primitive or complex types to an entity of any type (implementing

the IAttributeExtendableEntity interface). See section 2.5 for implementation details.

1.2.19. StarCommunity.Core.Modules.Queries

This namespace contains the Queries core module whose functionality spans over all the
StarCommunity modules, and optionally it may extend to third party modules as well. It
exposes the base functionality of queries and criteria and is not used directly, but instead
through implementations of these base classes. Queries allows for retrieving dynamically
filtered results.

1.2.20. StarCommunity.Modules.Blog

The StarCommunity.Modules.Blog namespace contains classes for creating and

managing blogs.

1.2.21. StarCommunity.Modules.Calendar

The StarCommunity.Modules.Calendar namespace contains classes for creating and

managing calendars, events, event invites and event registrations.

1.2.22. StarCommunity.Modules.Chat

The StarCommunity.Modules.Chat namespace contains classes for creating and

managing chat rooms, chat users and chat moderators.

 20 (133)

1.2.23. StarCommunity.Modules.Club

The StarCommunity.Modules.Club namespace contains classes for creating and

managing clubs, club members, club ads and club keywords.

1.2.24. StarCommunity.Modules.ConnectionLink

The StarCommunity.Modules.ConnectionLink namespace contains classes for

retrieving the shortest path between two users with the use of a breadth-first algorithm.

1.2.25. StarCommunity.Modules.Contact

The StarCommunity.Modules.Contact namespace contains classes for managing one-

way or two-way relations between users. Create relations immediately or let users approve
them by the use of relations of the type “Request”.

1.2.26. StarCommunity.Modules.Contest

The StarCommunity.Modules.Contest namespace contains classes for managing

contests with alternative and free-text questions.

1.2.27. StarCommunity.Modules.DirectMessage

The StarCommunity.Modules.DirectMessage namespace contains classes for sending

and receiving direct-messages. Messages can be sent to multiple recipients at once and also
be used in “System” mode, which allows you to send messages to a large number of users
without performance drop.

1.2.28. StarCommunity.Modules.DocumentArchive

The StarCommunity.Modules.DocumentArchive namespace contains classes for

storing documents and creating folder structures.

1.2.29. StarCommunity.Modules.Expert

The StarCommunity.Modules.Expert namespace contains classes for creating and

managing experts, assign questions, approve answers and synchronize with forum rooms.

1.2.30. StarCommunity.Modules.Forum

The StarCommunity.Modules.Forum namespace contains classes for creating forums

and moderate topics.

1.2.31. StarCommunity.Modules.ImageGallery

The StarCommunity.Modules.ImageGallery namespace contains classes for creating

image galleries, generating thumbnails, cropping, resizing, promoting and voting for images.

1.2.32. StarCommunity.Modules.Moblog

The StarCommunity.Modules.Moblog namespace contains classes for receiving MMS

messages sent from mobile phones. Moblog comes integrated with the mobile enabler Unwire
but can easily be integrated with any other enabler.

1.2.33. StarCommunity.Modules.Moblog.ContentProviders.Unwire

The StarCommunity.Modules.Moblog.ContentProviders.Unwire

namespace contains the classes of the Unwire mobile enabler.

 21 (133)

1.2.34. StarCommunity.Modules.MyPage

The StarCommunity.Modules.MyPage namespace contains classes for presenting a user,

block other users and easily reach other modules connected to a user.

1.2.35. StarCommunity.Modules.NML

The StarCommunity.Modules.NML namespace contains classes for rendering HTML

content based on a dynamically defined set of tags and attributes.

1.2.36. StarCommunity.Modules.OnlineStatus

The StarCommunity.Modules.OnlineStatus namespace contains classes for

monitoring if a user is online, when the user last logged in or who is online at the moment.

1.2.37. StarCommunity.Modules.Poll

The StarCommunity.Modules.Poll namespace contains classes for creating and

managing voting polls.

1.2.38. StarCommunity.Modules.StarViral

The StarCommunity.Modules.StarViral namespace contains classes for creating and

managing viral marketing campaigns, follow user’s recruitments and select the best recruiter.

1.2.39. StarCommunity.Modules.Webmail

The StarCommunity.Modules.Webmail namespace contains classes for sending and

receiving e-mails over IMAP to be presented on the website. Automatically synchronizes with
the community user database.

 22 (133)

2. Tutorials

2.1. User Management

User Management in StarCommunity is done through a singleton of the type

StarCommunity.Core.Modules.Security.ISecurityHandler that is reached through

the property DefaultSecurity at

StarCommunity.Core.StarCommunitySystem.CurrentContext.DefaultSecurity.

1.2.40. Adding a User

Among the first things you build into a community is the possibility to register a membership

and get a User object instance representing this community member.

This article shows you, the developer, how to typically proceed to create this functionality with

the help of the StarCommunity Framework.

Import Necessary Namespaces

First import the necessary namespaces that will be used to add a user. The namespaces

StarCommunity.Core and StarCommunity.Core.Modules.Security are described by

clicking on their respective names. Make sure you add the assemblies as a reference,
mentioned in 1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

Declaring a New User Object

We then create a new User object instance by calling the NewUser property. This property

always returns a new User object instance and is handled by the running

SecurityHandler.

Currently the user exists only in memory. Before committing the object, we will need to set a
minimum list of properties, or the API will throw an exception when we try to commit it to the
database.

//Add user

IUser newUser = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.NewUser;

newUser.Alias = “Jhonny”;

newUser.GivenName = "John";

newUser.SurName = "Doe";

newUser.BirthDate = new DateTime(1975, 3, 5);

newUser.EMail = "john@doe.com";

newUser.PassWord = "secret";

newUser.UserName = "john";

newUser.Culture = System.Globalization.CultureInfo.CurrentUICulture;

In the above example we end with setting the culture. The culture will be used to define the
user’s language preference. It is used in the administration interface, but if the user is not

 23 (133)

intended to be an administrator, this culture can be used for other purposes. You can read
more about attributes under Fel! Hittar inte referenskälla..

Committing the User Object to Database

Up until now the user has only existed in memory, to finalize the creation of the user we need

to commit it to the database. We do this by calling the AddUser method of the currently

running SecurityHandler. Returned is the added user, but with the new unique ID property

set. This object can now be used as a user representation.

newUser = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.AddUser(newUser);

1.2.41. Authenticating a User

When you want to authenticate a login request by a member of a community, this can be done

through running SecurityHandler singleton.

Import Necessary Namespaces

First import the necessary namespaces that will be used to authenticate a user. The

namespace StarCommunity.Core is described by clicking on its name. Make sure you add

the assembly as a reference, mentioned in 1.1.1.

using StarCommunity.Core;

Performing the Authentication

Authentication will require the username and password entered by the user. The call to

AuthenticateUser will return if it was a success or not, with the additional user out

variable. The user variable will be set to the User object instance found if authentication was

successful.

StarSuite.Core.Modules.Security.IUser user = null;

bool isAuthenticated = StarCommunitySystem.CurrentContext.

DefaultSecurity.AuthenticateUser("john", "secret", out user);

This should set isAuthenticated to true and the user variable to the instance of the user

we added in 1.2.40.

Where is the Authentication Ticket?

One important thing to remember is that StarCommunity provides the means for

authenticating but does not set an actual authentication ticket in the ASP.NET authentication

framework. To finalize the authentication this will have to be done manually.

 24 (133)

ASP.NET Membership Provider

Will be added in a later revision of the StarCommunity 3.0 beta and will be mentioned in this

document. The above section on Authentication Tickets will then be obsolete.

1.2.42. Getting the Currently Logged in User

When a member of a community is logged in, you can get the User object instance from the

running SecurityHandler singleton through its CurrentUser property.

Import Necessary Namespaces

First import the necessary namespaces that will be used to get the currently logged in user.

The namespaces StarCommunity.Core and StarCommunity.Core.Modules.Security are

described by clicking on their respective names. Make sure you add the assemblies as a
reference, mentioned in 1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

Getting the User Object

The CurrentUser property will return the IUser object instance representing the user with

the username contained in the authentication ticket.

IUser user = (IUser)StarCommunitySystem.CurrentContext.

DefaultSecurity.CurrentUser;

1.2.43. Removing a User

Generally, removing a user in StarCommunity is a process that can be undone, optionally it

can be a permanent action.

This article will show you, the developer, how to remove a user temporarily and permanently

from the system.

Import Necessary Namespaces

First import the necessary namespaces that will be used to remove a user. The namespaces

StarCommunity.Core and using StarCommunity.Core.Modules.Security; are

described by clicking on their respective names. Make sure you add the assemblies as a
reference, mentioned in 1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

Temporarily Removing the User

When temporarily removing a user we have the option to undo the action afterwards. A
removed user still keeps its blog entries, forum topics, polls etc. The user will not be displayed

in listings but when retrieved by id the Removed property of the User object instance will be

set to true.

 25 (133)

//Remove the user

StarCommunitySystem.CurrentContext.DefaultSecurity.RemoveUser(1234);

Permanently Removing the User

Permanent removal is final; all content in the StarCommunity associated with the user will be

removed. The removal is made permanent by passing the permanent parameter as true to

the RemoveUser method.

//Remove the user

StarCommunitySystem.CurrentContext.

DefaultSecurity.RemoveUser(1234, true);

1.2.44. Restoring a User

After a temporary removal it is possible to restore a user to an active state, this action can not

be made on a permanently removed user, since the user is then no longer available in the

database.

Import Necessary Namespaces

First import the necessary namespaces that will be used to restore a user. The namespaces

StarCommunity.Core and StarCommunity.Core.Modules.Security are described

by clicking on their respective names. Make sure you add the assemblies as a reference,
mentioned in 1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

Restoring the User

To restore the user we first need to get the user’s User object instance. We set the Removed

property to false and update the user, committing our changes to the database with the

UpdateUser method. The user is now active again and will reappear in listings and search

queries.

//Get the user by id

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(1234);

user = (IUser)user.Clone();

user.Removed = false;

//Update the user, restoring it to active state

StarCommunitySystem.CurrentContext.DefaultSecurity.UpdateUser(user);

 26 (133)

1.2.45. Adding a User for Activation

User registration through activation by e-mail is a common way of assuring that a user’s e-mail

address is valid. StarCommunity solves this by temporarily storing user information in a

separate part of the system, not interfering with the primary user storage. Upon activation the

user data is moved to the primary user storage.

Import Necessary Namespaces

First import the necessary namespaces that will be used to add a user to the activation

storage. The namespaces StarCommunity.Core and

StarCommunity.Core.Modules.Security are described by clicking on their respective

names. Make sure you add the assemblies as a reference, mentioned in 1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

Adding the User for Activation

In the example below we create a new User object instance as before, except this time we

commit it with the method AddUserToActivate. Returned is a Guid, it will be used as the

activation key needed to activate the user.

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.NewUser;

user.Alias = “Jhonny”;

user.GivenName = "John";

user.SurName = "Doe";

user.BirthDate = new DateTime(1975, 3, 5);

user.EMail = "john@doe.com";

user.PassWord = "secret";

user.UserName = "john";

user.Culture =

System.Globalization.CultureInfo.CurrentUICulture;

Guid activationGuid = StarCommunitySystem.

CurrentContext.DefaultSecurity.AddUserToActivate(user);

Activating a User

After committing a user to the activation storage, we can imagine a scenario where the user

recently received the activation key in an e-mail. We now have the activation Guid, and can

activate the user.

Import Necessary Namespaces

First import the necessary namespaces that will be used to activate a user. The namespaces

StarCommunity.Core and StarCommunity.Core.Modules.Security are described by

clicking on their respective names. Make sure you add the assemblies as a reference,
mentioned in 1.1.1.

using StarCommunity.Core;

 27 (133)

using StarCommunity.Core.Modules.Security;

Just Activating

In most cases we just want to activate the user:

IUser activatedUser = StarCommunitySystem.

CurrentContext.DefaultSecurity.

ActivateUser(

new Guid("3B78D829-04D5-47B0-BF5A-32C47A460FEC")

);

In the above example we now got the new IUser object instance returned with its ID property

set. The user is now created and fully functioning.

Making Changes Before Activation

In some cases we need to make changes to the user data before activating it. We can do this
by presenting the user with the option to change its information before continuing with
activation.

The difference is, we retrieve the User object instance based on the activation key through

the GetUserToActivate method, change the UserName property in this case, then commit

the user to the database with the AddUser method. AddUser will recognize the user as a

user from the activation storage and will remove it. The Guid is now no longer valid and the

ID property is hereby the user’s identifier in the primary user storage.

IUser activationUser = StarCommunitySystem.

CurrentContext.DefaultSecurity.

GetUserToActivate(

new Guid("3B78D829-04D5-47B0-BF5A-32C47A460FEC")

);

activationUser.UserName = "changed";

activationUser = StarCommunitySystem.CurrentContext.

DefaultSecurity.AddUser(activationUser);

1.2.46. Adding a User to a Group

Having users as members of groups, allow you to instantly give a StarCommunity user a

certain set of access rights. Access rights set on groups are automatically inherited by its

members, is it users or child groups.

This article will show you, the developer, how to add a user to a group, which can be useful

when registering a member of a community.

Import Necessary Namespaces

First import the necessary namespaces that will be used to add a user to a group. The

namespaces StarCommunity.Core and StarCommunity.Core.Modules.Security are

 28 (133)

described by clicking on their respective names. Make sure you add the assemblies as a
reference, mentioned in 1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

Attaching the Group

To attach the group to a user, simply add the Group object instance into the user’s

GroupCollection, visible through the Groups property. The group is now only attached to

the user in memory, so adding or updating the user as a final step is required. In this example

we commit the user by calling the UpdateUser method.

//Get the user by id

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(1234);

user = (IUser)user.Clone();

//Get the group by id

IGroup group = (IGroup)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetGroup(1234);

user.Groups.Add(group);

//Update the user

StarCommunitySystem.CurrentContext.DefaultSecurity.UpdateUser(user);

 29 (133)

2.2. Tags

A Tag can be considered to be equivalent to a word or phrase that is used by users to

organize their content, commonly for the public. The use the Tag system, first import the

necessary namespace:

using StarCommunity.Core.Modules;

using StarCommunity.Core.Modules.Security ;

using StarCommunity.Core.Modules.Tags;

using StarCommunity.Modules.Blog; //only for this example.

2.2.1. Tagging an entity

The process of associating a tag with an entity item is done via the EntityTag class. The

EntityTag enables the developer to add information of who tagged the item, available via the

Tagger property of the EntityTag class. Keep in mind that each entity item can only be tagged

with a Tag once, just as services like Flickr.

//Get the user by id

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(1234);

//Get the blog by id

Blog b = BlogHandler.GetBlog(1);

if (b != null)

{

 b = (Blog)b.Clone();

 b.Tags.Add(new EntityTag(new Tag("foo"), new UserAuthor(user)));

 BlogHandler.UpdateBlog(b);

}

2.2.2. Retrieving the tags of an entity

Retrieving the tags that an entity object has been tagged with is as simple as enumerating the

Tags property of the StarCommunityEntityBase-derived object.

//Get the blog by id

Blog b = BlogHandler.GetBlog(1);

if (b != null)

{

foreach(EntityTag et in b.Tags)

{

 Console.Write("Tag name: "+et.Tag.Name);

 Console.Write(et.Tagger.Name);

 }

}

The Tag object is defined by its name. This makes it simple to retrieve the objects that have

been tagged with "foo":

Tag t = new Tag("foo");

int numberOfItems = 0;

ITaggableEntity[] taggedObjects =

 t.GetItems(/*site*/null, 1, 10, out numberOfItems);

 30 (133)

Items returned may be of different types; it may be Blogs, Images or Contacts that have been

tagged with this the tag "foo". Common to all returned objects are that they all implement the

ITaggableEntity interface, either directly or indirectly via the

StarCommunityEntityBase base class.

It is also possible to retrieve the items of a specific type tagged with a tag:

Tag t = new Tag("foo");

int numberOfItems = 0;

ITaggableEntity[] taggedObjects =

 t.GetItems(typeof(Blog), /*site*/null, 1, 10, out numberOfItems);

2.2.3. Removing a tag from an entity

To remove a tag from an entity object, just call the RemoveTag method.

//Get the blog by id

Blog b = BlogHandler.GetBlog(1);

b.Tags.RemoveTag(”foo”);

2.2.4. Retrieving a tag cloud

A tag cloud is an alphabetically sorted list of the most popular tags of a certain type or globally

within the system. Each tag in the list has a relative weight to the other items in the list, which

is commonly used to determine the font size when rendering the tag on a web page. The

StarCommunity tag system tries to retrieve a tag from each initial letter (grouping digits and

non-letter characters) so that the correct number of tags is returned (defaults are configured in

Tag.config). If the set needs to be expanded, more tags from the most popular initial letters

are added to the set. If the set needs to be reduced, the least popular tags are eliminated from

the set. Heuristics are applied at an early phase so that noise tags are removed (tags with

very low popularity compared to the most popular tags in the set). Each item in a tag cloud

encapsulates a Tag and its weight relative the other items in the tag cloud. A weight is an

integer value, its lower and upper boundary configured in Tag.config.

TagCloud cloud = TagHandler.GetTagCloud();

foreach (TagCloudItem item in cloud.Items)

{

 Response.Write("{0} ",

 item.Tag.Name, item.Weight);

 Response.WriteLine();

}

2.2.5. Implementing tag functionality on other classes

In the StarCommunity.Modules.Blog namespace alone there are a number of entity

classes, such as Blog, Entry and EntryComment which all inherit

StarCommunityEntityBase. The base class implements an ID property and the Tags

property, and it is left to the entity class to implement the remaining properties.

The StarCommunity tag system allows for each entity class to have their own ID domain.

However, it is required that the combination of entity type and a single integer ID uniquely

specifies an instance of the entity class.

 31 (133)

For the tag system to be able to recreate the objects there must be a EntityProvider configured

for the Type that has been tagged. Providers are already configured for all relevant

StarCommunity objects.

2.3. Rating

The rating system allows for rating of objects that implements the IRatableEntity

interface. A Rating is defined as the object to rate, the rating value and the rater. Rated

entities can then for example be retrieved by the average rate. The use the Rating system,

first import the necessary namespace:

using StarCommunity.Core.Modules;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Core.Modules.Rating;

using StarCommunity.Modules.Blog; //only for this example.

2.3.1. Rating an entity

In this example we use a Blog to rate. However, the similar approach is taken for all ratable

entities.

//Get the rating user by id

IUser user = (IUser)StarCommunitySystem.

 CurrentContext.DefaultSecurity.GetUser(1234);

//Get the blog to rate by id

Blog b = BlogHandler.GetBlog(1);

//Create a rating object with the rating value 3

IRating rating = new Rating(b, 3, new UserAuthor(user));

//Rate the blog

RatingHandler.Rate(rating);

2.3.2. Examine if a entity is already rated by an user

It may be of interest to see if a ratable entity has already been rated by a specific user. We call

the HasRated method in the RatingHandler. In the example below, the method would

return true.

RatingHandler.HasRated(b, new UserAuthor(user));

2.3.3. Retrieving ratings for an entity

There are many different overloads for getting ratings for a specific item. The example below

shows how to get all ratings for Blog b, rated by a specific user

RatingCollection ratingCollection =

 b.GetRatings(new UserAuthor(user), 1, 10, out totalItems);

 32 (133)

2.3.4. Retrieving entities based on average rating

//Get all entities of type Blog with an average rating of 3

int totalRatedItems = 0;

RatableEntityCollection ratedEntities =

 RatingHandler.getRatedItems(typeof(Blog), 3, 1, 10,

 out totalRatedItems);

2.4. Categories

The Category system allows for categorization of objects that implements the

ICategorizableEntityinterface. In this tutorial we use a Blog as an example.

 The use the Category system, first import the necessary namespaces:

using StarCommunity.Core.Modules;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Core.Modules.Categories;

using StarCommunity.Modules.Blog; //only for this example.

2.4.1. Add a category

Categories may be added programmatically or in the administration interface. Categories a

stored in a tree structure as shown in the example below.

//Create a new (root) category

ICategory category = new Category(“cars”);

//Commit to database

ICategory rootCategory = CategoryHandler.AddCategory(category);

//Create a new sub category to root category

ICategory subCategory = new Category(“volvo”, rootCategory);

//Commit to database

CategoryHandler.AddCategory(subCategory);

2.4.2. Removea category

Categories may be removed programmatically or in the administration interface. You can get a

category by id, by path or by name. in this example by path.

//Get the category to remove by path

ICategory category = CategoryHandler.GetCategory(“cars/volvo”);

//Remove the category

CategoryHandler.Removecategory(category);

 33 (133)

2.4.3. Categorize an entity

A categorizable entity can have one or more categories added to it.

//Get the blog to categorize by id

Blog blog = (Blog)BlogHandler.GetBlog(1).Clone();

//Get the category by id

Category category = CategoryHandler.GetCategory(1);

//Add the category to the blog

blog.Categories.Add(category);

//Update the blog to commit data to the database

BlogHandler.UpdateBlog(blog);

2.4.4. Retrieving categories for an entity

To get a collection of all categories connected to an entity, you just call the Categories

property on the categorizable entity.

//Get the blog to check for categories

Blog blog = BlogHandler.GetBlog(1);

//Get the categories for the blog

CategoryCollection categoryCollection = blog.Categories;

2.4.5. Retrieving entities based on categories

//Get the category for which we want entities

ICategory category = CategoryHandler.GetCategory(1);

//Add the category to the category collection

CategoryCollection categoryCollection = new CategoryCollection();

categoryCollection.Add(category);

//Get entities of type Blog that have been categorized with category

int totalItems = 0;

CategorizableEntityCollection categorizedEntities =

 CategoryHandler.GetCategorizedItems(typeof(Blog),

 categoryCollection, 1, 10, out totalItems);

 34 (133)

2.5. Attributes

The Attriibute system allows for developers to setting attributes and attributes values of

primitive and complex types to any object that implements the

IAttributeExtendableEntiry interface. This provides a fast and flexible way to extend

StarCommunity classes. The name of the attribute must be pre-defined in the database. This

is commonly done via the administration interface. The attribute name must be unique within a

type.

Note that this tutorial only describes the most elementary way to use attributes. A more object-

oriented approach is to create a custom class derived from Blog that expose fixed properties.

This would call for creating your own EntityProvider as explained in section 1.2.4

First import the necessary namespaces:

using StarCommunity.Core.Modules.Attributes;

using StarCommunity.Modules.Blog; //only for this example.

2.5.1. Setting attribute values

In this example we set a DateTime and a DocumentArchive attribute to a blog

//Get the blog for which set the attributes

Blog blog = (Blog)BlogHandler.GetBlog(1).Clone();

//Set a DateTime attribute that contains a last updated date

blog.SetAttributeValue<DateTime>(“attr_last_updated”, DateTime.Now);

//Get the document archive to use

DocumentArchive da = DocumentArchiveHandler.GetDocumentArchive(123);

//Set a DocumentArchive as an attribute to the blog

blog.SetAttributeValue<DocumentArchive>(“attr_archive”, da);

2.5.2. Getting attribute values

//Get the blog for wich we want the attriute values

Blog blog = BlogHandler.GetBlog(1);

//Get the last updated attribute

DateTime lastUpdated =

 blog.GetAttributeValue<DateTime>("attr_last_updated“);

//Get the document archive attribute

DocumentArchive da =

 blog.GetAttributeValue<DocumentArchive>(“attr_archive”);

 35 (133)

2.6. Queries

The Query system allows for dynamically creating a set of criteria that should applied to a

certain type before retrieving it. A criterion can have an infinite amount of sub-criteria which in

turn has their own sub-criteria. Queries like “return all Clubs with more than 10 members, with

a member age range between 25 and 30 years.” are now possible, and that’s just one of the

simple queries possible to compose. All relevant StarCommunity classes are retrievable and

can be filtered on.

Note that this tutorial uses the Query system in the most elementary way. To read more about

attributes, queries and system design, please refer to section 3.

First import the necessary namespaces:

Using StarSuite.Core.Modules.Sorting;

using StarCommunity.Core.Modules.Queries;

using StarCommunity.Modules.Blog; //only for this example.

2.6.1. Filter and and sort StarCommunity objects

In this example we want all blogs with the name “blog test” and that have 7 entries, ordered by

author name ascending. Note that the criteria may be nested, as is the case with the author

name.

//Create a new BlogQuery

BlogQuerybq = new BlogQuery()

//Initialize criterions

bq.Name = new StringCriterion();

bq.NumEntries = new IntegerCriterion();

bq.Author = new AuthorCriterion();

bq.Author.Name = new StringCriterion();

//Set values to filter on

bq.Name.Value = "Blog Test";

bq.NumEntries.Value = 7;

//Order by author name

bq.OrderBy.Add(

new CriterionSortOrder(bq.Author.Name, SortingDirection.Ascending));

//Get the filtered blog collection

BlogCollection blogs = BlogHandler.GetQueryResult(bq);

 36 (133)

2.6.2. Filter on custom attributes

This is a simple example of how to filter on an attribute. In this case it’s a primitive string

attribute, but it could very well also be a complex attribute. If for example it was a Forum

attribute, a ForumCriterion would be set instead of a StringCriterion. Nesting of this

criterion would then also be possible.

//Create a blog query

BlogQuery bq = new BlogQuery();

StringCriterion strCriterion = new StringCriterion();

strCriterion.Value = "Stringvalue";

bq["stringattrib"] = strCriterion;

bq.Author = new AuthorCriterion();

bq.Author.Name = new StringCriterion();

bq.OrderBy.Add(

new CriterionSortOrder(bq.Author.Name, SortingDirection.Ascending));

BlogCollection blogs = BlogHandler.GetQueryResult(bq);

2.6.3. Using And / Or conditions

Criteria can be grouped and delimeted with And / Or. In this example we group the Name and

NumEntries criteria, which will return Blogs with the name “Blog Test” OR with 7 entries.

//Create a new BlogQuery

BlogQuery bq = new BlogQuery()

//Initialize criterions

bq.Name = new StringCriterion();

bq.NumEntries = new IntegerCriterion();

bq.Author = new AuthorCriterion();

bq.Author.Name = new StringCriterion();

//Set values to filter on

bq.Name.Value = "Blog Test";

bq.NumEntries.Value = 7;

// We group Name and NumEntries and put OR inbetween

CriteriaGroup cg = new CriteriaGroup();

cg.AddCriterion(bq.Name);

cg.AddCriterion(LogicalOperator.Or, bq.NumEntries);

bq.AddCriteriaGroup(cg);

//Order by author name

bq.OrderBy.Add(

new CriterionSortOrder(bq.Author.Name, SortingDirection.Ascending));

//Get the filtered blog collection

BlogCollection blogs = BlogHandler.GetQueryResult(bq);

 37 (133)

 38 (133)

2.7. Blog

Management of blogs in StarCommunity is done through the BlogHandler class in the

StarCommunity.Blog namespace. In StarCommunity, blogs are used to represent a variety

of blog-like functions such as guestbooks, blogs, etc.

It is very common to have blogging functionality, guestbook functionality and similar on

community sites.

This article shows you, the developer, examples of how to create this functionality with the

help of the StarCommunity Framework.

Note, however, that in many of the common cases there is no need to explicitly create the

Blog. Eg, each user’s MyPage has both a Blog and a Guestbook property and each Club

has a MessageBlog and a NewsBlog property. See the respective chapters for these

modules for further information.

2.7.1. Adding a Blog

Import Necessary Namespaces

First import the necessary namespaces that will be used to add a blog. The namespace

StarCommunity.Modules.Blogis described by clicking on its name. Make sure you add

the assemblies as a reference, mentioned in 1.1.1.

using StarCommunity.Modules.Blog;

Adding a Blog

To add a Blog, we create an instance of the Blog class (there are several constructors

available). At this point the new Blog exists only in memory.

Blog blog = new Blog("Blog name");

Committing the Blog Object to Database

Up until now the blog has only existed in memory, to finalize the creation of the blog we need

to commit it to the system. We do this by calling the AddBlog method of a BlogHandler.

Returned is the added blog, with the new unique ID property set. This object can now be used

as a blog representation.

blog = BlogHandler.AddBlog(blog);

2.7.2. Removing a Blog

Import Necessary Namespaces

First import the necessary namespaces that will be used to remove a blog. The namespace

StarCommunity.Modules.Blogis described by clicking on its name. Make sure you add

the assemblies as a reference, mentioned in 1.1.1.

 39 (133)

using StarCommunity.Modules.Blog;

To remove a blog we simply need to call the RemoveBlog method in the BlogHandler with

a reference to a blog as argument. This removes the entire blog permanently.

BlogHandler.RemoveBlog(blog);

2.7.3. Changing blog properties

Import Necessary Namespaces

First import the necessary namespaces that will be used to change properties of a blog. The

namespace StarCommunity.Modules.Blogis described by clicking on its name. Make

sure you add the assemblies as a reference, mentioned in 1.1.1.

using StarCommunity.Modules.Blog;

Changing a property of a blog

Although there are constructors for the blog object that lets you set the blog presentation text

right from the start, often you want to change this or other properties of a blog after the blog

has been created. To do this, we fetch a blog by its unique ID, and simply change the

corresponding properties on the blog object.

Blog blog = BlogHandler.GetBlog(17);

blog.PresentationText = "New presentation text";

Committing the changes to the Blog Object to Database

Up until now the changes to this blog has only existed in memory, to commit these changes to

the system we need to call the UpdateBlog method in the BlogHandler.

BlogHandler.UpdateBlog(blog);

2.7.4. Adding a Blog Entry

A blog itself is only a container of sorts, the blog entries contain the actual blog content.

Import Necessary Namespaces

First import the necessary namespaces that will be used to add an entry to a blog. The

namespace StarCommunity.Modules.Blogis described by clicking on its name. Make

sure you add the assemblies as a reference, mentioned in 1.1.1.

 40 (133)

using StarCommunity.Modules.Blog;

using StarCommunity.Core.Modules;

Adding a Blog Entry

To add an entry, first we need references to the blog that we want to add the entry to, and the

author that has written the entry. There are several implementations of the IAuthor interface,

such as GuestAuthor (the entry has no connection to any site member), UserAuthor (a

site member is to be shown as the author) and AnonymousAuthor (a site member has

written the entry, but has chosen to be anonymous, using a pseudonym).

As usual, there are several constructors with different sets of arguments that may be of

interest.

IAuthor author = new GuestAuthor("Guest user");

Entry entry =

new Entry(blog, author, "Entry title", "Entry description");

Committing the Blog Entry Object to Database

Up until now the new blog entry has only existed in memory, to commit the new entry to the

system we need to call the AddEntry method in the BlogHandler.

Returned is the added blog entry, with the new unique ID property set. This object can now be

used as a blog entry representation.

Entry = BlogHandler.AddEntry(entry);

2.7.5. Adding a Blog Entry with Future Publication Date

If a blogger wants to add a blog entry, but wants to have it published in specific period of time,

he can do it by setting publication start and end date of the blog entry.

Import Necessary Namespaces

First import the necessary namespaces that will be used to add an entry to a blog. The

namespace StarCommunity.Modules.Blogis described by clicking on its name. Make

sure you add the assemblies as a reference, mentioned in 1.1.1.

using StarCommunity.Modules.Blog;

using StarCommunity.Core.Modules;

Adding a Blog Entry with Publication Dates

To add an Entry with specific publication dates, it is easier to use an Entry constructor that

allows it. After crating the object, we have to commit it in the database using BlogHandler

object.

 41 (133)

In the example below a GuestAuthor adds a new blog Entry. This blog Entry will be

published in 7 days, and since then will always be published (DateTime.MinValue means that

this date is not considered when determining publication state of the entry).

Blog blog = BlogHandler.GetBlog(12);

IAuthor author = new GuestAuthor("John");

Entry entry = new Entry(blog, author, "Entry title",

 "Entry content", DateTime.Now.AddDays(7), DateTime.MinValue);

BlogHandler.AddEntry(entry);

Publication Dates Meanings

When creating an Entry (as in the example above), we need to provide both publication start

and publication end date. If any of these dates will be DateTime.MinValue, it means that

this date shall not be considered. This means that if we provide DateTime.MinValue as

publication start date, then there is no publication start date – the entry is in published state

until the publication end date. If the publication end date is DateTime.MinValue, it means

that there is no publication end date – the entry is published since the publication start date.

Analogically, if both dates are DateTime.MinValue, the entry is published since the creation

date.

2.7.6. Getting Blog Entries

It is very often needed to retrieve blog entries, e.g. to list them on a web site. StarCommunity

provides several overridden methods that allow entries to be retrieved for specific blog.

Import Necessary Namespaces

First import the necessary namespaces that will be used to add an entry to a blog. The

namespace StarCommunity.Modules.Blogis described by clicking on its name. Make

sure you add the assemblies as a reference, mentioned in 1.1.1.

using StarCommunity.Modules.Blog;

Get All Blog Entries

To retrieve all the entries of a specific blog, one just needs to call GetEntries method of the

Blog class. The simplest override needs to be page number and number of items per page

provided – this method is used in the example below.

Blog blog = BlogHandler.GetBlog(12);

// get first 100 entries from the blog

EntryCollection entries = blog.GetEntries(1, 100);

 42 (133)

Getting Entries from Specific Dates and Publication Status

When listing blog entries on a webpage, it is often needed to group entries by dates. To do it,

there is a GetEntries method overload that allows passing start and ending date of a

timeframe that the entries were published (or not published).

Blog blog = BlogHandler.GetBlog(12);

// get fist 100 entries that are in "published" state

// between now and two weeks ahead

EntryCollection entries = blog.GetEntries(

 DateTime.Now, DateTime.Now.AddDays(14),

 EntryPublishState.Published, 1, 100);

2.7.7. Commenting on a Blog Entry

You may or may not want to make it possible for users to comment on posted blog entries. To

do this, we start by creating a new comment.

Import Necessary Namespaces

First import the necessary namespaces that will be used to add a comment to a blog entry.

The namespace StarCommunity.Core, StarCommunity.Core.Modules

This namespace contains the interface IStarCommunityEntity and the abstract

implementation classStarCommunityEntityBase. IStarCommunityEntity implements the

blueprint for tagging, attributes, rating and categorization. Also the Author classes and
interfaces are located here, allowing for guests and users to identify themselves when making
posts.

StarCommunity.Core.Modules.Security and StarCommunity.Modules.Blogis described

by clicking on its name. Make sure you add the assemblies as a reference, mentioned in
1.1.1.

using StarCommunity.Core;

using StarCommunity.Security;

using StarCommunity.Modules.Blog;

Adding a Blog Entry Comment

To add a comment to a blog entry, we need references to an entry and the author that wrote

the entry. Then we simply create a new instance of the EntryComment class.

IUser user =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(17

);

IAuthor author = new UserAuthor(user);

EntryComment comment =

new EntryComment(entry, author, "Comment title",

"Comment description");

 43 (133)

Committing the Blog Entry Comment Object to Database

Up until now the new blog entry comment has only existed in memory, to commit the new

entry comment to the system we need to call the AddEntryComment method in the

BlogHandler.

Returned is the added blog entry comment, with the new unique ID property set. This object

can now be used as a blog entry comment representation.

comment = BlogHandler.AddEntryComment(comment);

 44 (133)

2.8. Calendar

Calendar functionality in StarCommunity allows creating calendars and saving events within

them, allowing community members to be up-to-date with all the community happenings.

CalendarHandler is the class that provides calendar functionality. All other classes are entity

classes and are used to hold data retrieved from a database or prepared for saving to a

database. Calenders are already provided for MyPage and Club classes.

2.8.1. Adding a Calendar

Before any calendar functionality can be used, a calendar has to be created – this will allow all

other activity. This chapter will give you necessary knowledge to add a new calendar to the

community calendars collection.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to create and add a calendar. You

can go to the StarCommunity.Modules.Calendar namespace description by clicking on its

name. Make sure you add the assembly as a reference, as it is mentioned in 1.1.1.

using StarCommunity.Modules.Calendar;

Create and Add a Calendar

To create a calendar, call Calendar class constructor providing the name for the calendar.

After that, the calendar object is created and is ready to be committed in the StarCommunity

database. To do it, call the AddCalendar method of a CalendarHandler object. The

AddCalendar method returns added Calendar object with unique ID property set to a value

returned from the database.

// Create a new calendar and get the created instance back with its

// unique id set

Calendar c = new Calendar("New Calendar");

c = CalendarHandler.AddCalendar(c);

2.8.2. Removing a Calendar

When a calendar is no longer needed, it can be removed from the StarCommunity database.

Calendar removal is always permanent, which means that removed calendar cannot be

restored as it is deleted from the database.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to remove a calendar. You can see

the description of the StarCommunity.Modules.Calendar namespace by clicking on its name.

Make sure you add the assembly as a reference, as it is mentioned in 1.1.1.

 45 (133)

using StarCommunity.Modules.Calendar;

2.8.3. Remove a Calendar

To remove a calendar, a valid Calendar object is needed – e.g. it can be retrieved from

database first. After the Calendar object is available, it can be removed from database by

calling RemoveCalendar method of CalendarHandler object.

Calendar c = CalendarHandler.GetCalendar(1234);

// Remove the calendar

CalendarHandler.RemoveCalendar(c);

2.8.4. Adding an Event

After a calendar is created, events can be added to it. Event class describes a real event that

will occur at particular date (or period), and contains information like arranger name,

description, place, start date, end date etc.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to add a new event. You can read

descriptions of the namespaces StarCommunity.Core,

StarCommunity.Core.Modules.Security and StarCommunity.Modules.Calendar by

clicking on respective name. Make sure you add the assembly as a reference, mentioned in

1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Calendar;

Create a New Event

Creating a new event is a simple call to the Event class constructor. To call the constructor,

we need to provide calendar that the event belongs to, arranger name, event author, event

name, event description, event start and end date and place where it will take place. We also

decide whether or not the event shall be marked as published right after adding it. After that,

the event object will be created, and needs to be committed in the database using the

CalendarHandler.AddEvent method.

Calendar c = CalendarHandler.GetCalendar(1234);

// Create the author of the event

IUser user = (IUser)StarCommunitySystem.CurrentContext.

 DefaultSecurity.CurrentUser;

UserAuthor author = new UserAuthor(user);

// Define start and end dates

 46 (133)

DateTime startDate = new DateTime(2007, 6, 12);

DateTime endDate = new DateTime(2007, 6, 15);

// Create event object

Event ev = new Event(c, "Arranger name", author, "Event name",

"Event description", startDate, endDate, "Event place", true);

// Add event to the database

ev = CalendarHandler.AddEvent(ev);

The Event object returned from AddEvent method has its ID property set to a value returned

from database.

2.8.5. Adding a Recurring Event

A recurring event is one that occurs periodically at specified dates, e.g. someone’s birthdates

is a recurring event, as it occurs every year at specific day of specific month. In

StarCommunity, recurrence is defined using the EventRecurrence class. This way, if the

event shall be recurrent one, all that needs to be done is to create EventRecurrence object

and set it as a Recurrence property of the Event.

Recurrence Class Explained

The Recurrence class has several properties. To use the recurrence within the Calendar

properly, you need to understand what each property is used for.

Frequency – this property defines how frequently the event is repeated. The property is of

EventRecurrenceFrequency enumeration type:

 DailyNumeric – the event is repeated every Interval days, where Interval is

EventRecurrence class property, starting from the event start date

 DailyWeekday – the event is repeated every weekday, starting from the start date,

every Interval weeks (e.g. every 2
nd

 Tuesday)

 Weekly – the event occurs every N
th
 week at days specified in the DaysFlag

property of the EventRecurrence class, where N is the Interval specified for the

EventRecurrence (e.g. Wednesdays and Fridays every 3 weeks)

 MonthlyNumeric – the event occurs every N
th
 month at the same day as the event

start date, in intervals specified with Interval property of the EventRecurrence

(e.g. Every 15
th
 day of every 3

rd
 month)

 YearlyNumeric – the event occurs every N
th
 year at the same day and month as the

event start date, in intervals specified with Interval property of the

EventRecurrence (e.g. every 31
st
 May of every one year – someone’s birthdays)

Interval – specifies time interval between recurrent events. Interval specifies only the

value, unit is defined with Frequency property

DaysFlag – days at which the event occurs, used only with Frequency set to

EventRecurrenceFrequency.Weekly

StartDate – start date of the recurrence

EndDate – end date of the recurrence (only EndDate or MaxOccurrences can be set for

recurrence, setting one of those properties resets the second one)

 47 (133)

MaxOccurrences – maximum number of recurrences that can occur before the recurrence

ends (only EndDate or MaxOccurrences can be set for recurrence, setting one of those

properties resets the second one)

Import Necessary Namespaces

First, import the necessary namespaces that will be used to add a recurrent event. The

namespaces StarCommunity.Core, StarCommunity.Core.Modules

This namespace contains the interface IStarCommunityEntity and the abstract

implementation classStarCommunityEntityBase. IStarCommunityEntity implements the

blueprint for tagging, attributes, rating and categorization. Also the Author classes and
interfaces are located here, allowing for guests and users to identify themselves when making
posts.

StarCommunity.Core.Modules.Securityand StarCommunity.Modules.Calendarare described

by clicking on respective name. Make sure you add the assembly as a reference, mentioned

in 1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Calendar;

Create Recurrent Event

Creating recurrent event is very similar to creation of a normal event. The only difference is

that a RecurrentEvent class object has to be created, and set to the event Recurrence

property.

Calendar c = CalendarHandler.GetCalendar(1234);

// Create the author of the event

IUser user = (IUser)StarCommunitySystem.CurrentContext.

 DefaultSecurity.CurrentUser;

UserAuthor author = new UserAuthor(user);

// Define start and end dates – used to compute event duration

DateTime startDate = DateTime.Now;

DateTime endDate = DateTime.Now.AddDays(1);

// Create event object

Event ev = new Event(c, "Arranger name", author, "Event name",

 "Event description", startDate, endDate, "Event place", true);

// define event recurrence – every 2 weeks on Mondays and

// Wednesdays, 10 times

EventRecurrenceFrequency frequency =

 EventRecurrenceFrequency.Weekly;

int interval = 2;

DateTime recStartDate = DateTime.Now;

DateTime recEndDate = DateTime.MinValue;

int maxOccurences = 10;

EventRecurrenceDaysFlag daysFlag =

 48 (133)

 EventRecurrenceDaysFlag.Monday | EventRecurrenceDaysFlag.Wednesday;

// Create event recurrence object

ev.Recurrence = new EventRecurrence(frequency, interval,

 recStartDate, recEndDate, maxOccurences, daysFlag, 0);

// Add event to the database

ev = CalendarHandler.AddEvent(ev);

2.8.6. Inviting Users to an Event

When the event has been created, users can be invited to the event, and then e.g. invitation e-

mails can be send to them. In this section we will present how to create invites and bind them

to the event.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to invite users to an event. The

namespacesStarCommunity.Core, StarCommunity.Core.Modules,

StarCommunity.Core.Modules.Security and StarCommunity.Modules.Calendar are

described by clicking on respective name. Make sure you add the assembly as a reference,

mentioned in 1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Calendar;

Invite User to an Event

To invite a user to an event, we need to have the Event object that the invite will be added to,

and a UserAuthor object that defines the user we want to invite. After the Invite object is

created, it can be committed in the database by calling AddInvite method of the

CalendarHandler object.

Event event = CalendarHandler.GetEvent(2323);

// Get the user to invite by id

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(1234);

UserAuthor invitee = new UserAuthor(user);

// Create an invitation

Invite invite = new Invite(event, invitee);

// Add invitation to the database

invite = CalendarHandler.AddInvite(invite);

 49 (133)

2.8.7. Registering upon an Event Invitation

Similar to the invitations, users can register to events by themselves – we can imagine a

scenario when promotional event is prepared and only registered users will receive their

individual codes to access the event (concert, show etc.).

Import Necessary Namespaces

First, import the necessary namespaces that will be used to register to an event. The

namespacesStarCommunity.Core, StarCommunity.Core.Modules,

StarCommunity.Core.Modules.Security and StarCommunity.Modules.Calendarare

described by clicking on respective name. Make sure you add the assembly as a reference,

mentioned in section 1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Calendar;

Registering a User to an Event

Having an event, user can register to it if:

the event SecurityStatus property is set to SecurityStatus.Open or – if the event

SecurityStatus property is set to SecurityStatus.Closed – the user has been

invited to the event

the day when a user wants to register is within the registration period defined for an event

the number of users that registered to the event hasn’t reached the maximum number of

registrations specified for the event

the user is not already registered to the event

Event event = CalendarHandler.GetEvent(2323);

// Get the user to register by id

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(1234);

UserAuthor registrant = new UserAuthor(user);

// Create a registration

Registration registration = new Registration(event, registrant);

// Register user to the event

try

{

 registration = CalendarHandler.AddRegistration(registration);

}

catch(MaxNumRegistrationsReachedException mnex)

{

 throw new Exception("Max number of registrations reached", mnex);

}

catch(AlreadyRegisteredException arex)

{

 50 (133)

 throw new Exception("User is already registered", arex);

}

catch(RegistrationDateException rdex)

{

 throw new Exception("It is too early or too late to register",

 rdex);

}

catch(RegistrationNotInvitedException niex)

{

 throw new Exception("You have to be invited to register"

 + " to this event", niex);

}

 51 (133)

2.9. Chat

The Chat Module enables users to interact with other users in real time. To join a discussion,

the user simply opens a page in their browser containing Java™ applets that connect to a chat

server. Discussions take place in chat events, and several chat events can be active

simultaneously.

Chat events isolate discussions. Each chat event keeps a log of all users (and hostnames)

that have entered or left the chat event, what they saidand when they said it. That is, each

chat event keeps separate logs and lists of currently logged in users.

To get started, you will need some information from the chat server provider, such as the chat

server’s hostname. This information must be inserted in the corresponding parameters in the

examples below.

2.9.1. Implementing the Chat Applets on an ASP.NET page

This section outlines the implementation of the required chat applets in an ASP.NET page.

Details of how an applet is embedded in a web page differ between browsers, so we will be

using a JavaScript to output the HTML that has been customized for the current browser.

<SCRIPT language="javascript">

function makeApplet(sArchive, sCodebase, sCode, sId, iWidth,

iHeight, aParams) {

 var _app = navigator.appName;

 if (_app == 'Microsoft Internet Explorer') {

 document.write('<OBJECT name="'+sId+'"

id="'+sId+'"',

 'classid="clsid:'+

 '8AD9C840-044E-11D1-B3E9-

00805F499D93" ',

 'width="'+iWidth+'" ',

 'height="'+iHeight+'" ',

 'codebase="http://java.sun.com/products/'+

 'plugin/autodl/jinstall-1_4_2-

windows-'+

 'i586.cab#Version=1,4,2,0"',

 '>');

 document.write('<PARAM NAME="code"

VALUE="'+sCode+'">');

 document.write('<PARAM NAME="archive"

VALUE="'+

 sArchive+'">');

 document.write('<PARAM NAME="codebase"

VALUE="'+

 sCodebase+'">');

 document.write('<PARAM NAME="type"

VALUE="application/x-java-applet;version=1.4.2">');

 document.write('<PARAM NAME="mayscript"

VALUE="true">');

 document.write('<PARAM NAME="scriptable"

VALUE="true">');

 52 (133)

 for(var i=0; i<aParams.length; i++)

 document.write('<PARAM

NAME="'+aParams[i][0]+

 '"

VALUE="'+aParams[i][1]+'">');

 document.write('</OBJECT>');

 }

 else /*if (_app == 'Netscape') */

 {

 document.write('<embed ',

 'width="'+iWidth+'" ',

 'height="'+iHeight+'"

mayscript="true" ',

 'type="application/x-java-

applet;version=1.4.2" ',

 'pluginspage="http://java.sun.com/j2se/1.5.0/download.htm

l" ',

 'id="'+sId+'" name="'+sId+'"

code="'+sCode+'" codebase="'+sCodebase+'"',

 'archive="'+sArchive+'" ');

 for(var i=0; i<aParams.length; i++)

 document.write(aParams[i][0]+'="'+

 aParams[i][1]+'" ');

 document.write('/>');

 }

}

</SCRIPT>

The chat applets are split into four parts to enable the designer of the page to design a

suitable framework to embed the applets into. Applets are rectangular, opaque objects that

are configured as one of the following types:

Base

This (invisible) applet keeps track of the server connection(s) and does all non-GUI

related tasks.

ChatWindow

This is the message window where messages from the participating users are

displayed.

UserList

This applet displays a list of all the currently logged in users in the current chat event.

MessageBox

This optional applet is the input box where the user types its messages.

 53 (133)

2.9.2. Base

The base applet is not visible to the end user, but it serves some very important functions. It is

a one by one pixel applet that connects and logs in to the chat server and therefore it requires

parameters that determines which server to connect to as well as the user’s display name.

function chatNickTaken() { alert("Sorry, your alias is taken."); }

var _p = new Array();

_p[_p.length] = new Array("name", "chatBase");

_p[_p.length] = new Array("dependencies", "chatWindow chatUserList

chatMessageBox");

// IRC Server information

_p[_p.length] = new Array("ircServerAddress", "chat-server-host");

_p[_p.length] = new Array("ircServerPort", "5678");

_p[_p.length] = new Array("ircServerPassword", "pass");

// IRC User information

_p[_p.length] = new Array("ircNick", "<%=IrcNick%>");

_p[_p.length] = new Array("ircUserName", "<%=UserID%>");

_p[_p.length] = new Array("ircRealName", "<%=Name%>");

_p[_p.length] = new Array("nickTakenHandler", "chatNickTaken();");

makeApplet("IrcChat.jar", "http://chat-server-host/", "Chat.class",

"chatBase", 1, 1, _p);

2.9.3. ChatWindow

The chat window applet takes a number of parameters to configure its appearance and

functionality. We will display a selection of them here.

var _p = new Array();

_p[_p.length] = new Array("name", "chatWindow");

_p[_p.length] = new Array("dependencies", "chatBase");

_p[_p.length] = new Array("ircChannels", "");

_p[_p.length] = new Array("Caption", "Main");

_p[_p.length] = new Array("eventColors", "00CC00");

_p[_p.length] = new Array("nickColors", "000000");

_p[_p.length] = new Array("backgroundColor", "ecf2ec");

_p[_p.length] = new Array("base", "chatBase");

_p[_p.length] = new Array("moduletype", "ChatWindow");

_p[_p.length] = new Array("tabpanel_borderColor","bdcbef");

_p[_p.length] = new Array("tabpanel_hideTabs", "1");

_p[_p.length] = new Array("canStartPrivateConversations", "false");

_p[_p.length] = new Array("canDisplayPersonalPage", "false");

_p[_p.length] = new Array("messagePartClassName", "Chili");

_p[_p.length] = new

Array("iconProviderURL", "/img.php/id={1}/prefix={0}");

_p[_p.length] = new Array("intromessage", "");

makeApplet("IrcChat.jar", "http://chat-server-host/",

 54 (133)

"ChatWindow.class", "chatWindow", "100%", "100%", _params);

2.9.4. UserList

The user list displays the current participants in the chat event. Parameters configure for

example whether the usernames are clickable or not.

function chatDoubleClickNick(strUserName, strNick) {

window.open("/user/"+strNick, "_blank");

}

var _p = new Array();

_p[_p.length] = new Array("name", "chatUserList");

_p[_p.length] = new Array("dependencies", "chatBase");

_p[_p.length] = new Array("ircChannels", "<%=ChannelName%>");

_p[_p.length] = new Array("Caption", "UserList");

_p[_p.length] = new Array("backgroundColor", "FFFFFF");

_p[_p.length] = new Array("base", "chatBase");

_p[_p.length] = new Array("moduletype", "UserList");

_p[_p.length] = new Array("canStartPrivateConversations", "false");

//_p[_p.length] = new Array("canDisplayPersonalPage", "false");

//_p[_p.length] = new Array("hideAnonymousUsers", "true");

_p[_p.length] = new Array("displayGroup", "false");

_p[_p.length] = new Array("displayIcons", "false");

makeApplet("IrcChat.jar", "http://chat-server-host/",

"ChatUserList.class", "chatUserList", "100%", "100%", _p);

2.9.5. MessageBox

This applet displays a text box where the user inputs its next message. It can be used in one

of three modes: displayed, hidden or absent. In the hidden mode, put an alternate input

method, such as a normal input type="text" in your document and call the

sendMessage(message) method with JavaScript.

When the MessageBox applet is absent, it is because the current user should only be able to

monitor the chat event but not be able to participate in it. If the MessageBox applet is absent,

do not forget to adjust the Base applet’s dependencies accordingly.

// Used if you need to send a message to the channel

// with JavaScript.

function sendMessage(m) {

 var app = document.getElementById("chatMessageBox");

 if (app) {

 if (m=="") app.sendMessage();

 else app.sendMessage(m);

 }

}

var _p = new Array();

_p[_p.length] = new Array("name", "chatMessageBox");

_p[_p.length] = new Array("dependencies","chatBase");

_p[_p.length] = new Array("ircChannels","<%=ChannelName%>");

<% if ((!IsModerator) && (IsModerated) && (!IsVipUser)) { %>

_p[_p.length] = new Array("sendToIrcChannel",

 55 (133)

"<%=ModeratorChannelName%>");

<%

}

%>

_p[_p.length] = new Array("Caption", "MessageBox");

_p[_p.length] = new Array("backgroundColor", "FFFFFF");

_p[_p.length] = new Array("base", "chatBase");

_p[_p.length] = new Array("moduletype", "MessageBox");

_p[_p.length] = new Array("maxMessageLength", "400");

makeApplet("IrcChat.jar", "http://chat-server-host/",

"ChatMessageBox.class", "chatMessageBox", 1, 1, _p);

 56 (133)

2.10. Club

Clubs are mini-communities within a community. A club has a separate member list, club

news, forums and image galleries etc. Clubs can be treated in different ways; they can be

hidden, which means that only people who know about them can become members. It can

have different security states: closed or open. Closed clubs require approval from its owner

before allowing more members, while open clubs are free to join by anyone. Clubs can also be

created and wait for subsequent approval from an administrator, or the community can allow

for free creation of clubs.

2.10.1. Adding a Club

Adding a club through the API is useful when users want to create their own clubs based on

topics.

Import Necessary Namespaces

First import the necessary namespaces that will be used to add a club. The namespaces

StarCommunity.Modules.Club, StarCommunity.Cre.Modules.Security and

StarCommunity.Core are described by clicking on their respective names. Make sure you

add the assemblies as references, as mentioned in section 1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Club;

Creating the Club

In this example we start by getting the User object instances of the users we want as the

creator and owner of the club. Secondly we have decided to set this club as approved, visible

and with security status set to SecurityStatus.Closed.

//Get the creator by id

IUser creator = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(1234);

//Get the owner by id

IUser owner = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(12345);

bool isApproved = false;

bool isHidden = false;

Club club = new Club("Club name",

"Club description", isApproved,

null, null, SecurityStatus.Closed,

"Reason for creation", creator, owner,

null, isHidden);

club = ClubHandler.AddClub(club);

 57 (133)

Finally we add the club to database by calling the AddClub method. The new Club object

instance with its ID property set is returned.

2.10.2. Removing a Club

Removing a club can be done either temporarily or permanently. As with users, a permanent

removal means there is no way of undoing the action, while a temporary removal only results

in the club not appearing in listings and search queries.

Importing Necessary Namespaces

First import the necessary namespaces that will be used to remove a club. The namespace

StarCommunity.Modules.Club is described by clicking on its name. Make sure you add

the assembly as a reference, mentioned in section 1.1.1.

using StarCommunity.Modules.Club;

Removing a Club

To temporarily remove a club get the Club object instance id, and send it as a parameter to

the RemoveClub method. If we would now try to get the Club object instance with the

GetClub method, the club’s Removed property would be set to true.

//Get the club by id

Club club = ClubHandler.GetClub(1234);

//Temporarily remove the club

ClubHandler.RemoveClub(club);

Permanently Removing a Club

To permanently remove a club we start off in the same way as we did with temporary removal.

The difference is when we call the RemoveClub method, since this time we pass the

permanent parameter as true. If you try to retrieve the Club object instance now, using the

GetClub method, it will return null since the club no longer exists in the database.

//Get the club by id

Club club = ClubHandler.GetClub(1234);

//Permanently remove the club

ClubHandler.RemoveClub(club, true);

2.10.3. Adding Club Members

Becoming a member of a club is necessary if you want to share its information. A club owner

does not have to go through the process of becoming a member after creating a club, since

owners are automatically added to the member’s list.

This article will show you, the developer, how to add a user as a member of a club and what

the different results will be if the club is closed or open.

 58 (133)

Import Necessary Namespaces

First import the necessary namespaces that will be used to add a club member. The

namespaces StarCommunity.Modules.Club, StarCommunity.Core.Modules.Security and

StarCommunity.Core are described by clicking on their respective names. Make sure you

add the assemblies as a reference, mentioned in section 1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Club;

Adding a Member

To add a member we first get the club we want to become member of by its id, and then the
user that is to become a member by its id.

We create a Membership object instance and supply the club and user as arguments to its

constructor. When we create the Membership object instance, the membership will be set to

MembershipType.Applied if the club is set to SecurityStatus.Closed. This means

that if we use this default behavior, the membership will have to be applied by an administrator

or the club owner before it is valid. Finally we call the AddMembership method to store the

membership in the database.

//Get the club by id

Club club = ClubHandler.GetClub(1234);

//Get the new member by id

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(1234);

Membership m = new Membership(user, club,

"Reason why I want to join");

// Add the membership to database

m = ClubHandler.AddMembership(m);

2.10.4. Adding Club Ads

Club ads are used to promote a club in a community, either with images or text. In this article

we explain how to create a new Club Ad with an ImageGallery Image attached to it.

Import Necessary Namespaces

First import the necessary namespaces that will be used to add a Club Ad. The namespaces

StarCommunity.Modules.Club, StarCommunity.Core.Modules.Security and

StarCommunity.Core are described by clicking on their respective names. Make sure you

add the assemblies as a reference, mentioned in section 1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Mmodules.Security;

using StarCommunity.Modules.Club;

 59 (133)

Adding an Ad with an Image

To create a Club Ad from an image located at e.g. C:\Image.jpg requires the use of the

ImageGallery Module. Now we get the club we are making an ad for by its id, then we create

an Ad object instance. We have decided to set the ad as approved from the start; this means

that it does not need approval from an administrator. Finally we add the Ad object instance to

the database by calling the AddAd method.

System.IO.FileStream fs =

new System.IO.FileStream(@"C:\Image.jpg",

System.IO.FileMode.Open);

using(fs)

{

//Get the image uploader by id

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(1234);

 StarCommunity.Modules.ImageGallery.Image image =

 new StarCommunity.Modules.

ImageGallery.Image("Name", "Description", fs,

uploader);

//Get the club by id

Club club = ClubHandler.GetClub(1234);

bool isApproved = true;

 Ad ad = new Ad(club, "Test header",

"Test body", isApproved, image);

 ad = ClubHandler.AddAd(ad);

}

2.10.5. Setting Club Keywords

Keywords for clubs are used to give better results out of search queries. This article explains

how you bind a keyword to a club.

Import Necessary Namespaces

First import the necessary namespaces that will be used to add a club keyword. The

namespace StarCommunity.Modules.Club is described by clicking on its name. Make

sure you add the assembly as a reference, mentioned in section 1.1.1.

using StarCommunity.Modules.Club;

Adding a Keyword

As usual we start by creating a new ClubHandler object instance, we then get the club we

want to set the keyword on, by its id. Finally we create a new Keyword object instance and

supply the club together with the keyword as parameters to the constructor. Finally we add the

keyword to the database by calling the AddKeyword method. Search queries on this keyword

will not return this club.

 60 (133)

//Get the club by id

Club club = ClubHandler.GetClub(1234);

Keyword keyword = new Keyword(club, "Keyword Text");

keyword = ClubHandler.AddKeyword(keyword);

 61 (133)

2.11. ConnectionLink

ConnectionLink uses data from StarCommunity.Modules.Contact and performs Breadth

First Search (BFS) algorithms to decide the shortest path between 2 users.

2.11.1. Getting the Shortest Path

Use the ConnectionLinkHandler to get aUserCollection containing userA and the users

representing the shortest path to userB based on contact relations.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage the connection link and

users. The namespaceStarCommunity.Modules.ConnectionLink,

StarCommunity.Core andStarCommunity.Core.Modules.Security is described by clicking

on their names. Make sure you add the assemblies as a reference, mentioned in Setting up
Visual Studio.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.ConnectionLink;

Get the two users, userA and userB, to compare.

//Get the userA and userB by id

IUser userA =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(12

34);

IUser userB =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(12

35);

Get the UserCollection with the users representing the shortest path from userA to

userB

UserCollection connections =

ConnectionLinklHandler.GetShortestPath(userA, userB);

 62 (133)

2.12. Contact

Management of contacts is done through the ContactHandler class in the

StarCommunity.Contact namespace. The connection between the user and its contact

relations is done via the ContactContainer class. However, a ContactContainer is created

automatically for a user upon user creation, for each site in the system, and it is normally not

done by the developer.

2.12.1. Adding a Contact Relation

To add a ContactRelation, first create an instance of the ContactRelation class (there

are several constructors available). The ContactRelation constructor needs the

ContactContainer for the user that is adding the contact relation (userA), the user to be

added to the contact list (userB) and a ContactType. The contact type can be either

ContactType.Request or ContactType.Contact.ContactType.Request is used

when the contact relation must be approved by userB and ContactType.Contact is used

when the contact relation should come into effect immediately.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage contacts and users. The

namespaceStarCommunity.Modules.Contact,
StarCommunity.Modules.MyPage,StarCommunity.Core and

StarCommunity.Core.Modules.Security is described by clicking on their names. Make sure
you add the assemblies as a reference, mentioned in section 1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Contact;

using StarCommunity.modules.MyPage;

First we must get the ContactContainer for userA. This can be done by using the

ContactHandler, but in most cases it is accessed by the Contact propertyin the MyPage

class.

// Get the userA by id

IUser userA =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(12

34);

// Get the contact container for userA via my page

MyPage myPageA = MyPageHandler.GetMyPage(userA);

ContactContainer contactContainerA = myPageA.Contact;

The contactContainerA belonging to userA can now be used for creating a

ContactRelation to userB.

 63 (133)

//Get the userB by id

IUser userB =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(12

35);

ContactRelation contactRelation =

new ContactRelation(contactContainerA, userB, ContactType.Contact);

At this point the new ContactRelation object exists only in memory, to commit it to the

database and get the unique ID property set, we need to add it using the ContactHandler.

//Commit the contact relation to database

contactRelation =

ContactHandler.AddContactRelation(contactRelation);

Note that the AddContactRelation method always returns the committed object with the

unique ID property set. Depending on the Configuration File, a corresponding contact relation

of ContactType.Contact from userB to userA may automatically have been created. This

is the most common way to create contact relations where no contact approval is needed.

2.12.2. Removing a Contact Relation

First we need to get the ContactRelation object to be removed. This is done via the

ContactContainer for the removing user (userA). The ContactContainer can be

accessed via the ContactHandler but is most often accessed by the Contact property in

the MyPage class.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage contacts and users. The

namespacesStarCommunity.Modules.Contact, StarCommunity.Core and

StarCommunity.Core.Modules.Security are described by clicking on their names. Make sure
you add the assemblies as a reference, as mentioned in Setting up Visual Studio.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Contact;

using StarCommunity.Modules.MyPage;

Get the contact relation between userA and userB.

// Get the userA by id

IUser userA =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(12

34);

MyPage myPageA = MyPageHandler.GetMyPage(userA);

ContactContainer contactContainerA = myPageA.Contact;

 64 (133)

// Get the userB by id

IUser userB =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(12

35);

// Get the contact relation for userA to userB

ContactRelation contactRelation =

contactContainerA.GetContactRelation(userB);

Now we have the ContactRelation to be removed and we use the ContactHandler to

remove it.

ContactHandler.RemoveContactRelation(contactRelation);

Depending on Configuration File the corresponding ContactRelation from userB to

userA may automatically have been removed if the ContactType is set to

ContactType.Contact.

2.12.3. Approving a Contact Relation

Approving a ContactRelation code is basically about setting the ContactType.Request to

ContactType.Contact. The following example shows how userA is requesting a contact

relation to userB, which userB approves, resulting in that a ContactRelation of

ContactType.Contact is created from userA to userB and consequently from userB to

userA.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage contacts and users. The

namespaceStarCommunity.Modules.Contact, StarCommunity.Core and

StarCommunity.Core.Modules.Security is described by clicking on their names. Make sure
you add the assemblies as a reference, mentioned in Setting up Visual Studio.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Contact;

using StarCommunity.Modules.MyPage;

First create a ContactRelation from userA to userB of ContactType.Request. This

is done by getting the ContactContainercode for userA, usually accessed from the

 65 (133)

MyPage class.

// Get userA by id

IUser userA =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(12

34);

// Get userA contact container via my page

MyPage myPageA = MyPageHandler.GetMyPage(userA);

ContactContainer contactContainer = myPageA.Contact;

Then create a ContactRelation from userA to userB of ContactType.Request and

use the ContactHandler to add it and thereby commiting it to the database.

// Get userB by id

IUser userB =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(12

35);

// Create a contact relation between userA and userB of type Request

ContactRelation contactRelationA =

new ContactRelation(contactContainer, userB, ContactType.Request);

// Commit the contact relation to database

contactRelation =

ContactHandler.AddContactRelation(contactRelation);

userA now has a one-way relation of type ContactType.Request to userB. To create a

two-way relation of ContactType.Contact, userB needs to approve the request. This is

done by updating the ContactRelationcode to be of ContactType.Contact. First we need

to get the ContactRelation that should be updateed. This is done via the

ContactHandler class:

ContactRelation contactRelation =

ContactHandler.GetContactRelation(userA, userB);

Then we change the ContactType property from ContactType.Request to

ContactType.Contact.

contactRelation.ContactType = ContactType.Contact;

The changes to the object are now only represented in memory. We need to update the object

via the ContactHandler class to commit the object state to the database.

 66 (133)

ContactHandler.UpdateContactRelation(contactRelation);

Optionally, but commonly, you can now add a relation from userB to userA to get a two-way

relation between userA and userB. First we get the ContactContainer for userB via the

userB MyPage:

MyPage myPageB = MyPageHandler.GetMyPage(userB);

ContactContainer contactContainerB = myPageB.Contact;

Then create a new ContactRelation to userA and add it to commit the object to the

database.

ContactRelation contactRelation =

new ContactRelation(contactContainerB, userA, ContactType.Contact);

contactRelation =

ContactHandler.AddContactRelation(contactRelation);

The AddContactRelation method returns the committed object with the unique ID property

set.

2.12.4. ContactRelationCollections and Perspectives.

To get a ContactRelationCollection we call the GetContactRelations method in

the ContactContainer supplying the ContactType we are interested in. Since a

contact relation request can be either directed towards the current user or a request from the

current user towards another user, we need to introduce the enum Perspective.

Perspective values can be either Perspective.ToMe or Perspective.FromMe. The

following samples show the use of perspectives.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage contacts and users. The

namespaceStarCommunity.Modules.Contact, StarCommunity.Core and

StarCommunity.Core.Modules.Securityis described by clicking on their names. Make sure you
add the assemblies as a reference, mentioned in Setting up Visual Studio.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Contact;

using StarCommunity.Modules.MyPage;

First we get the userAContactContainer via the MyPage class.

// Get userA by id

IUser userA =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(12

 67 (133)

34);

// Get userA contact container via my page

MyPage myPageA = MyPageHandler.GetMyPage(userA);

ContactContainer contactContainerA = myPageA.Contact;

Get all contact relations of ContactType.Contact belonging to userA’s

ContactContainer.

int totalHits = 0 ;

ContactRelationCollection crCollection =

contactContainerA.GetContacts(ContactType.Contact,

Perspective.FromMe, 1, 20, out totalHits,

new

ContactRelationSortOrder(ContactRelationSortField.ContactAlias

, SortDirection.Ascending));

We are getting page 1 with 20 items per page and sorting on alias ascending.

Get all pending contact relation requests from other users to userA. Note that we use

Perspective.ToMe.

int totalHits = 0 ;

ContactRelationCollection crCollection =

contactContainerA.GetContacts(ContactType.Request,

Perspective.ToMe, 1, 20, out totalHits,

new ContactRelationSortOrder

(ContactRelationSortField.ContactAlias,

SortDirection.Ascending));

Get all pending requests made by userA to other users. The only thing we need to change is

Perspective.FromMe.

int totalHits = 0 ;

ContactRelationCollection crCollection =

contactContainerA.GetContacts(ContactType.Request,

Perspective.FromMe, 1, 20, out totalHits,

new ContactRelationSortOrder

(ContactRelationSortField.ContactAlias,

SortDirection.Ascending));

 68 (133)

2.12.5. Configuration File

ELEMENT NAME TYPE DESCRIPTION

ReverseAdd Boolean If set to true, when a ContactRelation

of type Contact from userA to userB

is added, a corresponding

ContactRelation from userB to userA

will be added automatically. Useful

when your community doesn’t use

approval steps for adding contact

relations.

ReverseRemove Boolean If set to true, when a ContactRelation

of type Contact from userA to userB

is removed, the corresponding

ContactRelation from userB to userA

will be removed automatically.

 69 (133)

2.13. Contest

Contest management is done through the ContestHandler class in

theStarCommunity.Modules.Contestnamespace. Contests are typically created and

managed by an administrator in the administration interface and not programmatically by a

developer. In this tutorial only actions you typically need to do front-end are shown. See the

StarCommunity User Manual for further information on how to create and manage contests.

2.13.1. Get Contests

We use the ContestHandler class to return a ContestCollection with all existing

contests. In this case we get page 1 with 20 items per page, sorted on creation date

ascending.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage contests. The namespace

StarCommunity.Modules.Contest is described by clicking on its name. Make sure you

add the assemblies as a reference, mentioned in section 1.1.1.

using StarCommunity.Modules.Contest;

Get the contest collection via the ContestHandler:

int totalHits = 0 ;

ContestCollection cCollection =

ContestHandler.GetContests(1, 20, out totalHits,

new ContestSortOrder(ContestSortField.Created,

SortDirection.Ascending));

2.13.2. Get Contest Questions

Contest questions can be of 2 different types that all inherit the Question base class. The

types are AlternativeQuestionandTextQuestion. The AlternativeQuestion is in

turned to SingleAlternativeQuestion and MultipleAlternativeQuestion classes.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage contests. The namespace

StarCommunity.Modules.Contest is described by clicking on its name. Make sure you

add the assemblies as a reference, mentioned in section 1.1.1.

using StarCommunity.Modules.Contest;

To the contest questions we first need the contest. This is done by calling the GetContest

method in the ContestHandler class.

 70 (133)

Contest contest = ContestHandler.GetContest(1234);

Then we get the contest questions collection via the Questions property in the Contest

class.

QuestionCollection qCollection = contest.Questions;

If the Questioncode is of type AlternativeQuestion you typically want to get the

alternatives. This is done via the Alternatives property of the AlternativeQuestion

class. Note that you need to examine the Questioncode object in the QuestionCollection

to decide whether it is an AlternativeQuestion before accessing the Alternatives

property. To get the Question object we use the ContestHandler class.

Question question = cHandler.GetQuestion(1234);

if(question is AlternativeQuestion)

{

AlternativeCollection altCollection =

((AlternativeQuestion)question).Alternatives;

}

Note: The question object is often accessible during ItemDataBound for repeaters and

data lists in a user control where a QuestionCollection typically acts as the datasource.

The GetQuestion method is therefore seldom used in this context.

2.13.3. Add Contest Submission

In the following sample we assume that we have a question of type

SingleAlternativeQuestion. To submit a contest submission, we first need to populate

an AnswerCollection.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage contests. The namespace

StarCommunity.Modules.Contest is described by clicking on its name. Make sure you

add the assemblies as a reference, mentioned in section 1.1.1.

using StarCommunity.Modules.Contest;

First we need to get the contests for which we want to submit our answers.

Contest contest = ContestHandler.GetContest(1234);

We initialize the answer collection.

AnswerCollection answers = new AnswerCollection();

 71 (133)

We get an alternative selected by the user via the ContestHandler class.

Alternative alternative = cHandler.GetAlternative(1234);

Then we get SingleAlternativeAnswer from the selected alternative and add it to
AnswerCollectionAnswer.

SingleAlternativeAnswer saa =

SingleAlternativeAnswer(alternative);

answers.Add(saa);

Create a contest submission for the user.

Submissin submission =

new Submission(contest, answers, user, "John", "Doe",

"Address", "Zip", "City", "Email");

At this point the submission only exists in memory. To commit it to the database we use the

AddSubmission method in the ContestHandler class.

ContestHandler.AddSubmission(submission);

2.13.4. Get winners

Winners are typically selected by an administrator in the administration interface. However,

you often want to get the winners for a contest for displaying them on your community.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage contests. The

namespaceStarCommunity.Modules.Contest is described by clicking on its name. Make

sure you add the assemblies as a reference, mentioned in section 1.1.1.

using StarCommunity.Modules.Contest;

First we need to get the Contest. This is done via the ContestHandler class.

Contest contest = ContestHandler.GetContest(1234);

To get a UserCollection of winners for the contest, we access the Winners property in

the Contest class.

UserCollection winners = contest.Winners;

 72 (133)

2.14. DirectMessage

Message management is done through the DirectMessageHandler class in the

StarCommunity.Modules.DirectMessagenamespace. Three root folders for each site

are created automatically for each user upon user creation: Inbox, Sent and Draft. The root

folders are accessible via the DirectMessageContainer class, which in turn is often

accessed via the MyPage class.

2.14.1. Send a Message

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage messages and users. The

namespace StarCommunity.Modules.DirectMessage, StarCommunity.Core and

StarCommunity.Core.Modules.Security is described by clicking on their names. Make sure
you add the assemblies as a reference, mentioned in Setting up Visual Studio.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.DirectMessage;

using StarCommunity.Modules.MyPage;

We start by creating a new Message providing the user who is sending the message.

//Get the sender user by id

IUser senderUser = (IUser)StarCommunitySystem.CurrentContext.

 DefaultSecurity.GetUser(1234);

//Create a new message

Message message =

 new Message(“message subject”, “message body”,

 senderUser, null);

Create recipients and add them to the message recipients list via the Recipients property of

the Message. To create a MessageReceiver we need a user and can optionally specify a

folder where we should put the message. In this case we put it in the recipient system folder

inbox. This folder is default if no folder is supplied. In this example we get the inbox via the

recipients MyPage

//Get the recipient user by id

IUser recipientUser = (IUser)StarCommunitySystem.CurrentContext.

 DefaultSecurity.GetUser(1235);

MyPage recipientMyPage = MyPageHandler.GetMyPage(recipientUser);

message.Recipients.Add(new MessageRecipient(MyPageUser,

recipientMyPage.DirectMessage.

GetSystemFolder(SystemFolderType.Inbox)));

 73 (133)

Now we are ready to send the message. This is done using the DirectMessageHandler.

DirectMeessageHandler.SendMessage(message);

Now the message is in the receiver’s Inbox folder. If you pass the second parameter

“copyToFolder” you can have a copy of the message delivered to for example the sender’s

Sent-folder.

2.14.2. Removing Messages

If you have opened for the possibility to have more than one MessageRecipient in your

community, you cannot simply remove the entire message since all receivers “share” the

same message. Instead you remove the message from the folderin question. When the

message is removed from all folders, the actual Message is removed automatically. In the

following sample we send a message from senderUser to two receivers (recipient1 and

recipient2) then remove the message from their Inboxes.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage messages and users. The

namespace StarCommunity.Modules.DirectMessage, StarCommunity.Core and

StarCommunity.Core.Modules.Security is described by clicking on their names. Make sure

you add the assemblies as a reference, mentioned in Setting up Visual Studio.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.DirectMessage;

using StarCommunity.Modules.MyPage;

First we create the message, add receivers and send it:

//Get the sender user by id

IUser senderUser = (IUser)StarCommunitySystem.CurrentContext.

 DefaultSecurity.GetUser(1234);

//Get 2 recipients users by id

IUser recipientUser1 =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(12

34);

IUser recipientUser2 =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(12

35);

//Create and send the message to the 2 recipients

Message message = new Message("Test subject", "test body",

 senderUser);

MessageRecipient recipient1 = new MessageRecipient

(recipientUser1);

MessageReceiver recipient2 = new MessageRecipient

(recipientUser2);

 74 (133)

message.Recipients.Add(recipient1);

message.Recipients.Add(recipient2);

DirectMessageHandler.SendMessage(message);

recipient1 now removes the message from his/hers Inbox folder. First we need to get the

folder. We get this via the recipient MyPage.

MyPage recipient1MyPage = MyPageHandler.GetMyPage(recipientUser1);

SystemFolder inbox1 =

 recipientMyPage1.DirectMessage.

 GetSystemFolder(SystemFolderType.Inbox)

We call the RemoveMessage method in the DirectMessageHandler class.

DirectMessageHandler.RemoveMessage(message, inbox1);

Note that the actual message still exists since receiver2 still have it in its Inbox. If

receiver2 also removes the message and senderUser removes it from his/hercopy folder,

the message itself will be automatically removed.

If you want to remove the message from all folders, you can use the

RemoveMessageoverload that only takes a Message as an argument.

DirectMessageHandler.RemoveMessage(message);

2.14.3. Listing Messages in Folders

All messages are located in one of the user's three system folders: Inbox, Sent and Draft (or

their subfolders). The MessageCollections are therefore accessible via the Folder class.

The following sample shows how to retrieve a MessageCollection from the root folder

Inbox.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage messages and users. The

namespace StarCommunity.Modules.DirectMessage, StarCommunity.Core and

StarCommunity.Core.Modules.Security is described by clicking on their names. Make sure

you add the assemblies as a reference, mentioned in Setting up Visual Studio.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.DirectMessage;

using StarCommunity.Modules.MyPage;

 75 (133)

First we need the DirectMessageContainer for the user who’s Inbox we want to list. We

access it via the users MyPage.

//Get the user by id

IUser user =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(12

34);

//Get the direct message container via user my page

MyPage myPage = MyPageHandler.GetMyPage(user);

DirectMessageContainer dmc = myPage.DirectMessage;

The root folders are accessible via the DirectMessageContainer. In this case we want the

Inbox folder:

Folder inbox = dmc.GetSystemFolder(SystemFolderType.Inbox)

Now we call the GetMessages method to get the MessageCollection. In this case we get

page 1 with 20 items per page, sorted by creation date ascending.

MessageCollection messages = inbox.GetMessages(1, 20,

new DirectMessageSortOrder

(DirectMessageSortField.DateCreated,

SortDirection.Ascending));

2.14.4. Flag a Message as read

When a receiver is reading the message you often want to visualize that the message has

been read. This is done by the updating the MessageRecipientHasRead To get the

message recipient we need to specify a message and a user.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage messages and users. The

namespace StarCommunity.Modules.DirectMessage, StarCommunity.Core and

StarCommunity.Core.Modules.Security is described by clicking on their names. Make sure

you add the assemblies as a reference, mentioned in Setting up Visual Studio.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.DirectMessage;

//Get the message

Message message = (Message)DirectMessageHandler.GetMessage(1234);

 76 (133)

//Get the recipient user by id

IUser recipientUser =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(12

34);

//Get the message recipient

MessageRecipient recipient =

 (MessageRecipient)DirectMessageHandler.GetRecipient(messa

ge, recipientUser).Clone();

//Update recipient and commit to database

recipient.HasRead = true;

DirectMessageHandler.UpdateRecipient(recipient);

The message is now flagged as read by the recipientUserand the read date has been

automatically set and can be accessed via the ReadDate property in the

MessageRecipient class

 77 (133)

2.15. Document Archive

The document archive is used for file sharing purposes between community members. A

document archive is automatically created on MyPage and Club creation and accessible via

the DocumentArchive property. Document archives can also be created as stand-alone

archives.

2.15.1. Add a Document Archive

Document archives automatically exist for MyPage and Club. However, if you need a stand-

alone archive you simply add a new document archive, this is done via the

DocumentArchiveHandler.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage document archives. The

namespaceStarCommunity.Modules.DocumentArchiveis described by clicking on the

name. Make sure you add the assemblies as a reference, mentioned in Setting up Visual
Studio.

using StarCommunity.Modules.DocumentArchive;

 Create a newDocumentArchive:

DocumentArchive da = new DocumentArchive("Name", "Description");

At this point, the DocumentArchive da only exists in memory. To commit it to database you

call the AddDocumentArchive method in the DocumentArchiveHandler class.

da = DocumentArchiveHandler.AddDocumentArchive(da);

Note that the AddDocumentArchive method returns the committed object with the unique

ID property set.

2.15.2. Remove a Document Archive

Stand-alone archives and all of their content can be removed. This is done via the

DocumentArchiveHandler RemoveDocumentArchive method. First we need the

document archive to be removed.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage the document archive.

The namespace StarCommunity.Modules.DocumentArchive is described by clicking on

its name. Make sure you add the assemblies as a reference, mentioned in section 1.1.1.

using StarCommunity.Modules.DocumentArchive;

 78 (133)

We use the GetDocumentArchive method in the DocumentArchiveHandler to get the

archive to be removed.

da = DocumentArchiveHandler.GetDocumentArchive(1234);

Then we remove it:

DocumentArchiveHandler.RemoveDocumentArchive(da);

2.15.3. Add a Document

To add a document to a DocumentArchive we need a document. The document is

constructed with a DocumentArchive, a User and a file Stream.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage document archives and

users. The namespaceStarCommunity.Modules.DocumentArchive,

StarCommunity.Core and StarCommunity.Core.Modules.Security is described by clicking

on their names. We also need to import System.IO to use the Stream class. Make sure you

add the assemblies as a reference, mentioned in Setting up Visual Studio.

using System.IO;

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.DocumentArchive;

using StarCommunity.Modules.MyPage;

First we get the document archive in which we want to add our document. In this case it is the

document archive that has been automatically created for us upon MyPage creation.

//Get the user by id

IUser user =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(12

34);

//Get the document archive for user via my page

MyPage myPage = MyPageHandler.GetMyPage(user);

DocumentArchive da = myPage.DocumentArchive;

Now we can create the document by providing the user that is uploading the file the document
archive and a file stream. In this case the archive owner is the same user as the uploader.

//Get the file stream

FileStream stream = new FileStream("foo.doc", FileMode.Open);

 79 (133)

//Create the document

Document doc =

new Document("foo.doc", "foo description", da, user, stream);

Now we add the Document doc using the DocumentArchiveHandler and at the same

time committ it to database, until now it has only been represented in memory.

doc = DocumentArchiveHandler.AddDocument(doc);

doc now contains the committed object with the unique ID property set.

2.15.4. Update a Document

To update an existing document we first need the document. The document can be retrieved

via the DocumentArchiveHandler.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage the document archive.

The namespace StarCommunity.Modules.DocumentArchive is described by clicking on

its name. Make sure you add the assemblies as a reference, mentioned in Setting up Visual
Studio.

using StarCommunity.Modules.DocumentArchive;

Retrieve the document archive using the GetDocument method in the

DocumentArchiveHandler class.

doc = (Document)DocumentArchiveHandler.GetDocument(1234).Clone();

Now we update the doc object, changing its description:

doc.Description = "An updated description";

Note that the object is now only modified in memory. To commit the changes to database, we

use the UpdateDocument method in the DocumentArchiveHandler class.

DocumentArchiveHandler.UpdateDocument(doc);

 80 (133)

2.15.5. Remove a Document

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage the document archive.

The namespace StarCommunity.Modules.DocumentArchive is described by clicking on

its name. Make sure you add the assemblies as a reference, mentioned in Setting up Visual
Studio.

using StarCommunity.Modules.DocumentArchive;

Before we can remove a document from a document archive, we need to get the document to

remove. This is done via the DocumentArchiveHandler.

doc = DocumentArchiveHandler.GetDocument(1234);

We can then remove it.

DocumentArchiveHandler.RemoveDocument(doc);

2.15.6. Configuration File

ELEMENT NAME TYPE DESCRIPTION

PhysicalPath String The physical path to where

document archive files should be

stored.

VirtualPath String The virtual path to where document

archive files should be stored.

 81 (133)

2.16. Expert

StarCommunity Expert module provides functionality enabling users to ask questions that can

be answered by the domain experts. Experts do not have to be community members to

provide answers to the questions.

2.16.1. Add an Expert

To fully use the Expert functionality, at least one Expert has to be added to the community to

answer the questions. In this section, we will focus on adding an Expert that is not a

community member – its only job in the community is to answer questions.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to add an expert. The namespaces

StarSuite.Core, and StarCommunity.Modules.Expert are described by clicking on

their respective names. Make sure you add the assembly as a reference, mentioned in 1.1.1.

using StarSuite.Core;

using StarCommunity.Modules.Expert;

Create a New Expert

Creating a new expert is a simple call to the Expert class constructor. The Expert class

constructor allows for providing several properties describing an expert: first and last name, e-

mail address, general description, qualifications, home page, phone, status and assigned site

within the community.

When the Expert object has been created, it has to be committed to database using the

AddExpert method of the ExpertHandler class object.

// Get site that the expert will be assigned to

StarSuite.Core.Modules.ISite site =

StarSuite.Core.SiteHandler.GetSite(1);

// create a new Expert

ExpertBase expert = new Expert("John", "Doe", "john@doe.com",

"Description", "Qualifications", "555-55-55",

 "http://johndoe.expert.com", ExpertStatus.Active, site);

// save expert in the database

expert = ExpertHandler.AddExpert(expert);

2.16.2. Add a Member Expert

An Expert does not have to be completely independent – a community member can be an

expert too. The only difference is that when creating a member expert, there is no need to

provide first name, last name and e-mail of an expert as these values are already known.

 82 (133)

Import Necessary Namespaces

First, import the necessary namespaces that will be used to add an expert. The

namespacesStarSuite.Core, StarCommunity.Core,

StarCommunity.Core.Modules.Security and StarCommunity.Modules.Expert are

described by clicking on their respective names. Make sure you add the assembly as a

reference, mentioned in section 1.1.1.

using StarSuite.Core.Modules;

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Expert;

Create a New Member Expert

Creating a new member expert is a simple call to the ExpertMember class constructor. The

ExpertMember class constructor allows for providing several properties describing a member

expert: the user that is to become an expert, general description, qualifications, home page,

phone, status and assigned site.

When the ExpertMember object has been created, it has to be committed in the database

using the AddExpert method of the ExpertHandler class object.

// Get site that the expert will be assigned to

StarSuite.Core.Modules.ISite site =

StarSuite.Core.SiteHandler.GetSite(1);

// Get current user to become an expert

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.CurrentUser;

// create a new Expert

ExpertBase expert = new ExpertMember(user,

"Description", "Qualifications", "555-55-55",

 "http://johndoe.expert.com", ExpertStatus.Active, site);

// save expert in the database

expert = ExpertHandler.AddExpert(expert);

With ExpertMember it has to be remembered that GivenName, SurName and EMail

properties of the class are read only. Each of these properties has a setter, but it throws

NotSupportedException, as the values are taken from the injected User instance. To

change them, change the ExpertMember.User properties.

2.16.3. Remove an Expert

When the existing Expert or ExpertMember does not want to or cannot be an expert any

more, he can be removed from the StarCommunity. This section briefly explains how to do

that.

 83 (133)

Import Necessary Namespaces

First, import the necessary namespaces that will be used to remove an expert. The

namespace StarCommunity.Modules.Expert is described by clicking on its name. Make

sure you add the assembly as a reference, mentioned in section 1.1.1.

using StarCommunity.Modules.Expert;

Remove an Expert

Removing an expert is a very simple operation – all that is needed is to have an Expert or

ExpertMember object, and call the RemoveExpert method of the ExpertHandler class.

Removing an expert means that he will no longer be able to login, view or answer questions

etc. If the expert is ExpertMember, the underlying user is not deleted – he is simply no longer

an expert within the community, but is still a valid user of the community.

// Get an expert to remove

ExpertBase expert = ExpertHandler.GetExpert(234);

// remove the expert

ExpertHandler.RemoveExpert(expert);

2.16.4. See if a User is an Expert

It is often needed in the application to display different user interface depending on whether

the currently logged in user has some capabilities or not. The same applies to the Expert

functionality – when a user is an expert, there can be a need to display questions assigned to

him, or enable user interface features to answer questions. This section will show how to

obtain information if a user is an Expert.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to check if a user is an expert. The

namespacesStarCommunity.Core, StarCommunity.Core.Modules.Security and

StarCommunity.Modules.Expert are described by clicking on respective names. Make

sure you add the assembly as a reference, mentioned in section 1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Expert;

Check if a User is an Expert

The simplest way to check if a User is an Expert is to get an Expert based on the user we

want to check using the GetExpert method of the ExpertHandler. If the function returns

an ExpertMember object, it means that the user is an expert; if it returns null, the user is

not an expert, as no expert with that unique user id exists in the database.

 84 (133)

// Get the user to check by id

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(1234);

bool isExpert = false;

// Try to retrieve an expert

ExpertBase expert = ExpertHandler.GetExpert(user);

// if returned expert object is not null, the user is an expert

if (expert != null)

 isExpert = true;

2.16.5. Add a Question

The purpose of experts existence in the community is simply to answer questions. However,

before they can do so, a question has to be asked. In this section, we will show how a user

can add a question to an Expert.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to ask a question by a user. The

namespacesStarCommunity.Core, StarCommunity.Core.Modules.Security and

StarCommunity.Modules.Expert are described by clicking on their respective names.

Make sure you add the assembly as a reference, mentioned in section 1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Expert;

Add a Question

To add a question, first a Questioncode object has to be created. To create it, we need to

provide question header, question body, the status of the question and the author of the

question. Question header and body are strings that define the question; the question status

can be one of: New, Assigned, Published, Revoked or Rejected. For new questions, it is best

to set the status to New. Question author can be one of: UserAuthor (community User is the

author of the question), AnonymousAuthor (community User is the author, but does not want

to be identified by other community members) and GuestAuthor (has no underlying user).

After the Question object is created, the question can be saved in the database using

theAddQuestion method of the ExpertHandler class.

// Get the user to create an author

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.CurrentUser;

// Create the author of the question.

// If the current user is not logged in user (user is null),

// the created author will be a GuestAuthor. Otherwise,

 85 (133)

// a UserAuthor will be created.

IAuthor author = null;

if (null == user)

 author = new GuestAuthor("Guest");

else

 author = new UserAuthor(user);

// create the question

Question question = new Question("Header", "Body",

 QuestionStatus.New, author);

// Add question to the database – returned Question

// object has ID property set

question = ExpertHandler.AddQuestion(question);

2.16.6. Assign a Question

Before an expert can answer a question, it has to be assigned to him. When the question has

been assigned, you can use one of several methods in the ExpertHandler class to retrive the

question based on its assignments, answered/not answered status etc.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to ask a question by a user. The

namespace StarCommunity.Modules.Expert is described by clicking on its name. Make

sure you add the assembly as a reference, mentioned in section 1.1.1.

using StarCommunity.Modules.Expert;

Assign a Question

To assign a question, an AssignedQuestion object has to be created. Objects of this class

bind questions to experts, and allow for assigning a forum topic that relates to the question.

// Get a question from database

Question question = ExpertHandler.GetQuestion(322);

// Get an expert from database

ExpertBase expert = ExpertHandler.GetExpert(994);

// Create AssignedQuestion

AssignedQuestion asgndQstn = new AssignedQuestion(question, expert);

// Add the assignment to the database;

// the returned AssignedQuestion has ID property set

asgndQstn = ExpertHandler.AddAssignedQuestion(asgndQstn);

2.16.7. Answer a Question

When a question has been assigned to an expert, it can be answered. If the Expert module

have the AutoPublish property set to true, the question status is automatically changed to

 86 (133)

Published if it was in New or Assigned state. Below you can find a short example of how to

add an answer to a question.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to answer a question. The

namespace StarCommunity.Modules.Expert is described by clicking on its name. Make

sure you add the assembly as a reference, mentioned in section 1.1.1.

using StarCommunity.Modules.Expert;

Answer a Question

To answer a question, an Answer object has to be created. Answer object has a reference to

the AssignedQuestion object, therefore both the question and the expert answering the

question are always known. When the Answer object has been created, it has to be

committed to database using the AddAnswer method of the ExpertHandler class.

// Get an assinged question from database

AssignedQuestion asgndQstn = ExpertHandler.GetAssignedQuestion(987);

// Create an answer, initially in "not approved" state

Answer answer = new Answer("Answer header", "The answer itself",

 AnswerStatus.NotApproved, asgndQstn);

// Add answer to the database;

// the returned Answer object has its ID property set

answer = ExpertHandler.AddAnswer(answer);

2.16.8. Approve an Answer

Before publishing the answer to the public, it might be necessary to review the answer to

approve it. This section provides information on how to approve an answer.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to answer a question. The

namespace StarCommunity.Modules.Expert is described by clicking on its name. Make

sure you add the assembly as a reference, mentioned in section 1.1.1.

using StarCommunity.Modules.Expert;

Approve an Answer

To approve an answer, the Answer object has to be retrieved from the database. Approving

an answer means setting the Status property to AnswerStatus.Approved. When the

Answer object is changed, it has to be committed to database using the UpdateAnswer

method of the ExpertHandler class.

 87 (133)

// Get the answer from the database

Answer answer = (Answer)ExpertHandler.GetAnswer(396).Clone();

// Update answer status

answer.Status = AnswerStatus.Approved;

// Update answer in the database

answer = ExpertHandler.UpdateAnswer(answer);

2.16.9. Get Questions Assigned to an Expert

Normally, when an expert logs into the site, you want to show the questions assigned. This

section explains how to do it in detail.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to answer a question. The

namespace StarCommunity.Modules.Expert is described by clicking on its name. Make

sure you add the assembly as a reference, mentioned in section 1.1.1.

using StarCommunity.Modules.Expert;

Get Questions Assigned to an Expert

To retrieve questions assigned to a specific Expert, all we need is to know the Expert (e.g.

knowing the unique GUID). After that we get the questions assigned to the Expert by calling

the GetAssignedQuestions method of the ExpertHandler class – the method then

returns the AssignedQuestionCollection object, and each of the collection elements

(that is, AssignedQuestion objects), has a Question property which can be used to get

the Question object itself.

// Get the expert

ExpertBase expert = ExpertHandler.GetExpert(333);

// Get expert assigned questions (first page of 100 questions)

AssignedQuestionCollection asgndQuestions =

ExpertHandler.GetAssignedQuestions(expert, 1, 100);

// Get questions itself

QuestionCollection questions = new QuestionCollection();

Foreach(AssignedQuestion aq in asgndQuestions)

{

 questions.Add(aq.Question);

}

2.16.10. Get Question Answers

When a user choses a question on the site similar to the question it has, the user might want

to see the answers to this question. This section shows how to retrieve answers given to

specific questions.

 88 (133)

Import Necessary Namespaces

First, import the necessary namespaces that will be used to answer a question. The

namespace StarCommunity.Modules.Expert is described by clicking on its name. Make

sure you add the assembly as a reference, mentioned in section 1.1.1.

using StarCommunity.Modules.Expert;

Get Answers to a Question

The most common situation is when it is needed to display all answers given to a question.

The example below shows how one can do that.

// Get the question by its ID

Question question = ExpertHandler.GetQuestion(234);

// Get the answers given to this question (first page with 100

// answers)

AnswerCollection answers = ExpertHandler.GetAnswers(question, 1,

100);

Get Answers Given by an Expert

It is sometimes usefull to know all answers given by a specific Expert, regardless of a

Question. The code below presents how to do that.

// Get the expert by its ID

ExpertBase expert = ExpertHandler.GetExpert(332);

// Get the answers given by this expert (first page with 100

// answers)

AnswerCollection answers = ExpertHandler.GetAnswers(expert, 1, 100);

Get an Answer Given by an Expert to a Question

To get only the answer that an Expert submitted to a specific Question, you can use code

similar to the one presented below.

// Get the expert by its ID

ExpertBase expert = ExpertHandler.GetExpert(332);

// Get the question by its ID

Question question = ExpertHandler.GetQuestion(323);

// Get the answer given by this expert to this question

Answer answer = ExpertHandler.GetAnswer(question, expert);

 89 (133)

2.17. Forum

Forums are stored in a tree structure; in the root are the forum instances, followed by

discussion rooms, and their child rooms. A forum instance is a way of shielding different

rooms from interacting with each other. In a room, different topics can be posted and replied

on.

The following kinds are available:

TYPE DESCRIPTION

Prioritized A prioritized topic is displayed above regular topics,
keeping them there even if they are no longer having
active discussions.

Announcement Announced topics are displayed in all rooms of a forum
instance and above prioritized and regular topics.

Locked A topic can be locked in combination with being
announced or prioritized. Locked topics can no longer be
replied to.

2.17.1. Adding a Forum

If you want to add a new “forum instance” to the root of the tree this is how you would

proceed.

Import Necessary Namespaces

First import the necessary namespaces that will be used to add a forum instance. The

namespace StarCommunity.Modules.Forumis described by clicking on its name. Make

sure you add the assembly as a reference, mentioned in section 1.1.1.

using StarCommunity.Modules.Forum;

Adding the Forum Instance

To add a forum instance we simply create a new ForumHandler object instance, together

with a new Forum object instance. The forum will need a Site as a parameter to the

constructor; in this case we have selected to supply the CurrentSite property, which

returns the site we are currently browsing.

Forum forum = new Forum(StarSuite.Core.SiteHandler.CurrentSite,

"Test Forum");

forum = ForumHandler.AddForum(forum);

2.17.2. Adding a Topic

Topics are added to a room and can be created by guests, registered users or users wishing

to be anonymous. This article will describe how a registred user creates a new topic.

 90 (133)

Import Necessary Namespaces

First import the necessary namespaces that will be used to add a topic. The namespaces

StarCommunity.Modules.Forum, StarCommunity.Core.Modules.Security and

StarCommunity.Core are described by clicking on their respective names. Make sure you

add the assemblies as a reference, mentioned in section 1.1.1.

using StarCommunity.Core;

using StarCommunirt.Core.Modules;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Forum;

Adding the Topic

To add the topic we need a User object instance of the author of the topic together with a

Room object instance of where we want to post the topic. We then construct a Topic and

supply it to the AddTopic method of the ForumHandler to store it in the database.

//Get the topic author by id

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(1234);

//Get the targeted room by id

RoomBase room = ForumHandler.GetRoom(1234);

Topic topic = new Topic(new UserAuthor(user),

"Topic subject",

"Topic text", room);

topic = ForumHandler.AddTopic(topic);

2.17.3. Locking a Topic

By locking a topic you can mark it as not allowing further replies. In this article we will describe

how to update a topic to a locked state.

Import Necessary Namespaces

First import the necessary namespaces that will be used to lock a topic. The namespace

StarCommunity.Modules.Forumis described by clicking on its name. Make sure you add

the assembly as a reference, mentioned in section 1.1.1.

using StarCommunity.Modules.Forum;

Locking the Topic

To lock a topic we first get the Topic object instance by its id. By changing the Locked

property we have made the necessary changes in memory. To finalize the locking of the topic

we need to store our changes in the database, we do that by calling the UpdateTopic

method of the ForumHandler. The topic is now marked as locked and the appropriate

measures can be taken in the user interface of the web page.

 91 (133)

Topic topic = (Topic)handler.GetTopic(1234).Clone();

topic.Locked = true;

ForumHandler.UpdateTopic(topic);

2.17.4. Removing a Topic

This article will describe how to remove a topic from a room.

Import Necessary Namespaces

First import the necessary namespaces that will be used to remove a topic. The namespace

StarCommunity.Modules.Forumis described by clicking on its name. Make sure you add

the assembly as a reference, mentioned in section 1.1.1.

using StarCommunity.Modules.Forum;

Removing the Topic

To remove a topic we start with getting the Topic object instance we want to remove, by its

id. When we have the object instance we pass it to the RemoveTopic method, removing it

from the database.

Topic topic = handler.GetTopic(1234);

ForumHandler.RemoveTopic(topic);

2.17.5. Moving a Topic

Moving of topics can be done in two ways. One way is to change the topics connection to a

room, keeping its id and leaving no trace of the move. Another way is by creating a copy in a

new room, leaving a trace of the move in its old location, where the trace keeps the old topic

id. How this is done depends of the room’s TraceMove property.

Import Necessary Namespaces

First import the necessary namespaces that will be used to move a topic. The namespace

StarCommunity.Modules.Forumis described by clicking on its name. Make sure you add

the assembly as a reference, mentioned in section 1.1.1.

using StarCommunity.Modules.Forum;

Moving the Topic

To move the topic we need the object instance of the destination room, the topic to be moved

and a TopicTrace to leave in the old location. The TopicTrace will be used in case the

topic’s room has the property TraceMove set to true.

//Get the destination room by id

RoomBase destRoom = ForumHandler.GetRoom(1234);

 92 (133)

//Get the topic by id

Topic topic = ForumHandler.GetTopic(1234);

//Move the topic

topic = ForumHandler.MoveTopic(topic,

destRoom,

new TopicTrace("Trace Subject", "Trace Text"));

2.17.6. Adding a Reply

Replies are added to topics and can be authored by guests, registered users or users wishing

to be anonymous. This article will describe how to add a reply to a topic.

Import Necessary Namespaces

First import the necessary namespaces that will be used to add a reply. The namespaces

StarCommunity.Modules.Forum, StarCommunity.Core.Modules.Security and

StarCommunity.Core are described by clicking on their respective names. Make sure you

add the assemblies as a reference, mentioned in section 1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Forum;

Adding the Reply

To add the reply we need a User object instance of the author of the reply together with the

Topic object instance we wish to reply to. We then construct a Reply and supply it to the

AddReply method of the ForumHandler to store it in the database.

//Get the reply author by id

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(1234);

//Get the topic we are replying to by id

Topic topic = ForumHandler.GetTopic(1234);

Reply reply = new Reply(new UserAuthor(user),

"Topic subject",

"Topic text", topic);

reply = ForumHandler.AddReply(reply);

2.17.7. Removing a Reply

This article will describe how to remove a reply to a topic.

Import Necessary Namespaces

First import the necessary namespaces that will be used to remove a reply. The namespace

StarCommunity.Modules.Forumis described by clicking on its name. Make sure you add

the assembly as a reference, mentioned in section 1.1.1.

 93 (133)

using StarCommunity.Modules.Forum;

Removing the Topic

To remove a reply we start with getting the Reply object instance we want to remove, by its

id. When we have the object instance we pass it to the RemoveReply method, removing it

from the database.

Reply reply = ForumHandler.GetReply(1234);

ForumHandler.RemoveReply(reply);

 94 (133)

2.18. Image Gallery

The ImageGallery is a central module in StarCommunity Framework because it is used

wherever images are handled in a community system. ImageGallery management is done

through the ImageGalleryHandler class in the

StarCommunity.Modules.ImageGallerynamespace.

2.18.1. Adding an Image Gallery

In many cases, an ImageGallery is already provided and there is no need to create one.

This is the case with Blog, Calendar, Expert, Contest and MyPage where an

ImageGallery is created upon object instantiation of these classes and accessible via the

ImageGallery property. However, you might want to create a new stand-alone

ImageGallery. This is done via the ImageGalleryHandler.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage image galleries. The

namespace StarCommunity.Modules.ImageGallery is described by clicking on its

name. Make sure you add the assemblies as a reference, mentioned in section 1.1.1.

using StarCommunity.Modules.ImageGallery;

First we create an ImageGallery object.

ImageGallery imageGallery =

new ImageGallery("Name", "Description");

At this point the imageGallery object only exists in memory, we commit the object to

database by calling the AddImageGallery method in the ImageGalleryHandler class.

imageGallery = ImageGalleryHandler.AddImageGallery(imageGallery);

Note that the AddImageGallery method returns the committed object with the unique ID

property set.

2.18.2. Removing an Image Gallery

To remove an ImageGallery you call the RemoveImageGallery method in the

ImageGalleryHandler class.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage image galleries. The

namespace StarCommunity.Modules.ImageGalleryis described by clicking on its

name. Make sure you add the assemblies as a reference, mentioned in section 1.1.1.

 95 (133)

using StarCommunity.Modules.ImageGallery;

First we need the ImageGallery to be removed:

imageGallery = ImageGalleryHandler.GetImageGallery(1234);

Then we use the ImageGalleryHandler to remove it:

ImageGalleryHandler.RemoveImageGallery(imageGallery);

2.18.3. Adding an Image

As mentioned in Adding an Image Gallery, there are several classes already providing an

ImageGallery accessible through the ImageGallery property. However, in this sample we

use an existing stand-alone ImageGallery to put our images in.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage image galleries and

users. The namespaces StarCommunity.Modules.ImageGallery,

StarCommunity.Core and StarCommunity.Core.Modules.Security are described by

clicking on their names. We also need to import System.IO for a file Stream. Make sure you

add the assemblies as a reference, mentioned in Setting up Visual Studio.

using System.IO;

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.ImageGallery;

We get the ImageGallery via the ImageGalleryHandler:

imageGallery = ImageGalleryHandler.GetImageGallery(1234);

Then we create an Image object providing the ImageGallery and a System.IO.Stream

object for the image file. We also provide the imageGallery where we want the Image, the

publish state and the current user who is uploading the image.

//Get the uploading user

IUser user =

(IUser)StarCommunitySystem.CurrentContext.DefaultSecurity.GetUser(12

34);

//Get the file stream

FileStream stream = new FileStream("foo.jpg", FileMode.Open);

Image image =

 96 (133)

new Image("foo.jpg", "My first image", stream,

 imageGallery,

PublishState.Published, user, false);

Note that the image object at this point only exists in memory, and we need to call the

AddImage method in the ImageGalleryHandler to commit it:

image = ImageGalleryHandler.AddImage(image);

Note that the AddImage method returns the committed object with the unique ID property set.

2.18.4. Removing an Image

Removing an existing image is done via the ImageGalleryHandler.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage image galleries. The

namespace StarCommunity.Modules.ImageGallery is described by clicking on its

name. Make sure you add the assemblies as a reference, mentioned in Setting up Visual
Studio.

using StarCommunity.Modules.ImageGallery;

First we get the Image object to remove:

Image image = ImageGalleryHandler.GetImage(1234);

Then we remove it:

ImageGalleryHandler.RemoveImage(image);

2.18.5. Crop and Rotate an Image

The image Crop and Rotate90 methods are located in the ImageActionHandler class in

the StarCommunity.Modules.ImageGallery.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage image galleries. The

namespace StarCommunity.Modules.ImageGallery is described by clicking on its

name. Make sure you add the assemblies as a reference, mentioned in Setting up Visual
Studio.

using StarCommunity.Modules.ImageGallery;

 97 (133)

First we need to get an Image to edit. This is done using the GetImage method in the

ImageGalleryHandler class. At the same time we create an instance of the

ImageActionHandler to access the crop and rotate methods:

Image image = ImageGalleryHandler.GetImage(1234);

To begin with, we need a temporary file to save our image during editing, before we commit
the changes to database. This can for example be done by using the

System.IO.Path.GetTempFileName(), which creates such a file for us:

string tmpImageFileName = System.IO.Path.GetTempFileName();

Then we rotate the image 90 degrees clockwise by calling the Rotate90 method in the

ImageActionHandler:

ImageAction rotateAction =

iah.RotateImage90(image.AbsolutePath, tmpImageFileName, true);

To crop the image we need to specify the coordinates for the upper-left corner and width and

height. These are then passed to the Crop method in the ImageActionHandler class:

int x = 23;

int y = 54;

int w = 100;

int h = 100;

ImageAction cropAction =

ImageActionHandler.Crop(image.AbsolutePath, tmpImageFileName,

image.Width, image.Height, x, y, w, h);

The Rotate90 and Crop methods are returning an ImageAction object containing data on

the changes that were made on the temporary image file. We collect the ImageAction

objects to an ImageAction array:

ImageAction[] ia = new ImageAction[] { rotateAction, cropAction };

To make the changes to the original Image object and commit the changes to database we

call the ImportEditedImage method in the ImageGalleryHandler class providing the

image action array:

ImageGalleryHandler.ImportEditedImage(image, tmpImageFileName, ia);

 98 (133)

2.18.6. Getting a Thumbnail of an Image

In most cases you don’t want to display an image in the original format. Therefore, we use the

GetThumbnail method in the ImageGalleryHandler where we can define height and

width of the returned image. We can then use the Url property on the Thumbnail to display

it on the web page.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage image galleries. The

namespace StarCommunity.Modules.ImageGallery is described by clicking on its

name. Make sure you add the assemblies as a reference, mentioned in Setting up Visual
Studio.

using StarCommunity.Modules.ImageGallery;

First we need the Image from where we extract the Thumbnail. This is done via the

ImageGalleryHandler:

Image image = ImageGalleryHandler.GetImage(1234);

Now we use the GetThumbnail method in the Image class to get a Thumbnail where we

specify the height and width.

Thumbnail thumb =

image.GetThumbnail(100, 100, ThumbnailFormat.Proportional);

The available ThumbnailFormat properties are Proportional,

ExactandReduceAndCrop. ThumbnailFormat.Proportional scales the image so that

its proportions are intact. Therefore you can not expect to get an image size of 100 by 100.

ThumbnailFormat.Exactstretches the image if necessary to an image size of 100 by 100.

ThumbnailFormat.ReduceAndCrop makes sure you get a 100 by 100 image by cropping

it if necessary.

We may now use the Url property in the Thumbnail class to display the image on a web

page.

2.18.7. Getting Images in an Image Gallery

To get images from an ImageGallery to a ImageCollection we use the GetImages

method in the ImageGallery class.

Import Necessary Namespaces

First import the necessary namespaces that will be used to manage image galleries. The

namespace StarCommunity.Modules.ImageGallery is described by clicking on its

name. Make sure you add the assemblies as a reference, mentioned in Setting up Visual
Studio.

using StarCommunity.Modules.ImageGallery;

 99 (133)

First we get the ImageGallery that contains our images. This is done via the

ImageGalleryHandler class:

ImageGallery imageGallery = ImageGalleryHandler.GetImageGallery(

1234);

We get the images in the image gallery imageGallery. We take page 1 with 20 items per

page sorting on image name ascending:

int totalHits = 0;

ImageCollection ic =

imageGallery.GetImages(1, 20, out totalHits,

new ImageSortOrder(ImageSortField.Order,

SortDirection.Ascending));

 100 (133)

2.19. Moblog

The Moblog module allows MMS messages from mobile phones to be sent to a community

running StarCommunity. The Moblog module can receive and store text, image, sound and

video content and has a series of configuration options. By defining destination filters in the

StarCommunity administration interface content can be stored in the following places:

DESTINATION DESCRIPTION

MyPage The content is stored in the MyPage Image
Gallery/Document Archive. The correct MyPage is found
by matching the MMS sender’s phone number against
the “msisdn” attribute of the MyPage owner. The
attribute to look to can be changed in the Moblog config
file.

Selected The content is stored in an Image Gallery/Document
Archive selected by the administrator.

Ignore The content of a specific type is ignored.

2.19.1. Redirecting an Unwire MMS to a Specific Destination

The default installation of the Moblog module comes integrated with Unwire. Unwire is a

mobile enabler company that can deliver MMS messages in an easily read XML format. The

Moblog module already handles this format. Though in some cases delivering content to other

parts of the community than the MyPage may be necessary, let’s say to a club matching the

name mentioned in the message. This article will explain how you as a developer can build a

web page that serves as the receiving point of the Unwire message, how to parse it and then

decide its destination before storing it.

Import Necessary Namespaces

First import the necessary namespaces that will be used to redirect an MMS message. The

namespacesStarCommunity.Modules.Moblog,

StarCommunity.Modules.Moblog.ContentProviders.Unwire and

StarCommunity.Modules.ImageGallery, are described by clicking on their respective

names. Make sure you add the assemblies as a reference, mentioned in section 1.1.1.

using StarCommunity.Modules.Moblog;

using StarCommunity.Modules.Moblog.ContentProviders.Unwire;

using StarCommunity.Modules.ImageGallery;

Redirecting the Message

The aim of this web page is to first get the UnwireContentProvider singleton and then

accept the Unwire request for the web page, mentioned in the Unwire documentation. Parse

the XML with the ParseMmsXml method to retrieve an Mms in-memory object instance. The

following code is up to the implementer, but in this case we create an in-memory filter directing

images to a specific ImageGallery, ignoring all other content types, except text, which is

always stored in the message itself. When we finally call the OnMessageReceived method

the message is stored in the database and all images in it will end up in the ImageGallery

we specified in the filter.

UnwireContentProvider unwireCp = null;

 101 (133)

foreach(ContentProviderBase cp in

MoblogModule.Instance.ContentProviders)

{

 if(cp is UnwireContentProvider)

 unwireCp = (UnwireContentProvider)cp;

}

if(unwireCp == null)

 throw new ApplicationException("Unwire Content Provider

is

not installed", null);

Response.Clear();

Response.ClearHeaders();

Response.ContentType = "text/plain";

Response.AddHeader("cmd", "asynch-no-trace");

Response.Flush();

System.Xml.XmlDataDocument xmlDoc =

new System.Xml.XmlDataDocument();

xmlDoc.Load(Request.InputStream);

Mms mms = unwireCp.ParseMmsXml(xmlDoc);

//Analyze the mms and create a destination filter

MoblogHandler moblogHandler = new MoblogHandler();

MmsDestinationFilter filter =

new MmsDestinationFilter(mms.ShortCode, mms.MediaCode, null,

 MmsContentDestination.Selected,

ImageGalleryHandler.GetImageGallery(12

34), MmsContentDestination.Ignore,

null, MmsContentDestination.Ignore,

null);

//Store the message content in the destinations

//referred to in the filter

unwireCp.OnMessageReceived(mms, filter);

 102 (133)

2.20. MyPage

The StarCommunity MyPage module contains the functionality that is used on a user’s profile.

2.20.1. Blocking a User

Blocking a user, flags that user as blocked in the system. This can then be used to stop a user

from communicating with the user that added the block from sending messages, adding as

friend, etc.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to block a user. The

namespacesStarSuite.Core, StarCommunity.Core,

StarCommunity.Core.Modules.Security and StarCommunity.Modules.MyPageare

described by clicking on their respective names. Make sure you add the assembly as a

reference, mentioned in section 1.1.1.

using StarSuite.Core;

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.MyPage;

Blocking a User

The code below shows how a user is blocked. Initially, get the two users. Then, get the

MyPage class for the user who is making the block. The block is created by taking the

parameters of this MyPage class and the User object of the one to block.

//Get the logged in user

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.CurrentUser;

// Get the user to block

IUser user2 = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(1234);

// Get the my page object for the current user and current site

MyPage mp = MyPageHandler.GetMyPage(user, SiteHandler.CurrentSite);

//Block this user

MyPageHandler.AddBlock(mp, user2);

2.20.2. Seeing if a User is Blocked

Since a flag is set to block a user, this flag can then be retrieved to determine wheter or not

this user is blocked.

 103 (133)

Import Necessary Namespaces

First, import the necessary namespaces that will be used to see if the user is blocked. The

namespaces StarSuite.Core, StarCommunity.Core,

StarCommunity.Core.Modules.Security and StarCommunity.Modules.MyPage are

described by clicking on their respective names. Make sure you add the assembly as a

reference, mentioned in section 1.1.1.

using StarSuite.Core;

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.MyPage;

Seeing if a User is blocked

The code section below displays how the IsBlocked function is used to see if the user is

blocked or not. This function returns true if blocked, and false if not blocked.

//Get the logged in user

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.CurrentUser;

// Get the user to see their block status

IUser user2 = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(1234);

// Get the my page object for the current user and current site

MyPage mp = MyPageHandler.GetMyPage(user, SiteHandler.CurrentSite);

//Determine if the user is blocked

bool isBlocked = MyPageHandler.IsBlocked(mp, m_user2);

2.20.3. Getting Blocked Users

If you want to display all users a person has blocked as a list on their profile, this can be

retrieved from the system.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to get blocked users. The

namespaces StarSuite.Core, StarCommunity.Core,

StarCommunity.Core.Modules.Security and StarCommunity.Modules.MyPage are

described by clicking on their respective names. Make sure you add the assembly as a

reference, mentioned in section 1.1.1.

using StarSuite.Core;

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

 104 (133)

using StarCommunity.Modules.MyPage;

Getting Blocked Users

The code below displays how to get a list of blocked users from a MyPage object.

//Get the logged in user

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.CurrentUser;

// Get the my page object for the current user and current site

MyPage mp = MyPageHandler.GetMyPage(user, SiteHandler.CurrentSite);

// The list of users that are blocked for this MyPage owner

StarSuite.Security.UserCollection blockedUsers =

 mp.GetBlockedUsers(1, 10);

2.20.4. Setting a Portrait Image

A portrait image is created on the user by setting the Portrait property of the MyPage

object. This property is an ImageGalleryImage.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to set the portrait image. The

namespacesStarSuite.Core, StarCommunity.Core,

StarCommunity.Core.Modules.Security and StarCommunity.Modules.MyPageare

described by clicking on their respective names. Make sure you add the assembly as a

reference, mentioned in section 1.1.1.

using System.IO;

using StarSuite.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.MyPage;

using StarCommunity.Modules.ImageGallery;

Setting a Portrait Image

View the code below to see a sample of how the profile portrait image can be set.

//Get the logged in user

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.CurrentUser;

// Get the my page object for the current user and current site

MyPage mp = (MyPage)MyPageHandler.GetMyPage(user,

SiteHandler.CurrentSite).Clone();

 105 (133)

private string exampleFile = @".\Image.jpg";

FileStream fs = new FileStream(exampleFile, FileMode.Open);

using(fs)

{

//Create the Image object

Image portrait = newImage("Portrait",

"Some description", fs, user);

//Set the Portrait property

mp.Portrait = portrait;

//Update the MyPage class

MyPageHandler.UpdateMyPage(mp);

}

 106 (133)

2.21. NML

NML is a markup language much like HTML. To let community members use NML for

producing rich text instead of letting them supply HTML directly has some great advantages.

First of all, you can easily limit what can by done by only defining NML tags that do sane, safe

things. Secondly, the community member can not alter the look of the entire page (unless

such tags are defined), only the area that the NML output is visible in will be affected. That is,

even if opened tags are not properly closed, no “leakage” occurs. Defining Tags in

Configuration File.

Example Configuration

This is part of the default configuration. This will be helpful to have available as a reference

when reading the explanation of the NML configuration file.

<?xml version="1.0" encoding="UTF-8"?>

<NMLSettings

xmlns="http://netstar.se/StarCommunity/NML/NMLSettings.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://netstar.se/StarCommunity/NML/NMLSettings.

xsd">

<Category Name="general">

<Tag Trigger="font">

<PreTemplate></PreTemplate>

<PostTemplate></PostTemplate>

<Attribute Name="face" DefaultValue="verdana"

 Template="font-family:{value};">

<AllowedValue>verdana</AllowedValue>

<AllowedValue>arial</AllowedValue>

<AllowedValue>courier</AllowedValue>

</Attribute>

<Attribute Name="size" DefaultValue="10"

Template="font-size:{value}px;">

<AllowedValue>18</AllowedValue>

<AllowedPattern>^1[0-4]$</AllowedPattern>

</Attribute>

</Tag>

</Category>

</NMLSettings>

 107 (133)

The Category tag

The configuration file contains one or more Category tags. Any tags defined are under one

of these categories. This means that different categories can have completely different tags

defined, or different implementations of the same tag.

When rendering NML, the category to use can be specified, otherwise the category named

“general” is used.

The Tag tag

This tag has the mandatory Trigger attribute which is the name that defines the tag. If you

want to be able to use “[b]foo[/b]”, the Trigger value would be “b”.

The PreTemplate tag

This tag holds the template text for the output before the text that the tag encloses. If you have

“[b]foo[/b]”, this is the template for the text that should be added before “foo” in the output.

The PostTemplate tag

This tag holds the template text for the output after the text that the tag encloses. If you have

“[b]foo[/b]”, this is the template for the text that should be added after “foo” in the output.

The Attribute tag

There can be zero or more Attribute tags for each Tag tag. These define possible

attributes to that NML tag. The mandatory Name attribute defines the name of the NML

attribute. This is used as the key when inserting the attribute value in the PreTemplate or

PostTemplate text. In the template texts “{keyname}” is replaced with the attribute value

with that name. The mandatory DefaultValue attribute defines the default value of the NML

attribute. The mandatory Template attribute defines the template text for the attribute in the

output. Each Attribute tag may have zero or more AllowedValue or AllowedPattern

tags, these are used to verify that the user-provided value for the attribute is sane.

AllowedValue defines a static string to validate against, AllowedPattern defines a

regular expression to use for validation. If any of the AllowedValue or AllowedPatterns

match the supplied value for the attribute, the input will be accepted. Otherwise the supplied

value will be ignored.

2.21.1. Rendering NML Content

The main purpose of the NML module is to render NML code. This is very easy to do once you

have decided on what tags to use and when you have added them in the configuration file.

Import Necessary Namespaces

First, import the necessary namespaces that will be needed for this. The namespace

StarCommunity.Modules.NML is described by clicking on the name. Make sure you also

add the mentioned assembly as a reference, as mentioned in section 1.1.1.

using StarCommunity.Modules.NML;

 108 (133)

Limiting Maximum Word Length

To render an NML string, simply call the static Render method in the NMLModule. It is also

possible to provide an NML category as an additional argument, if desired.

NMLModule.Render("a [b]string[/b]");

2.21.2. Limiting Maximum Word Lengths

There is functionality in the NML module to encode text with HTML, render NML and limit max

word length, all in one single step. This method is helpful in many cases where you want to

render NML, and don’t want to do any additional manipulation of the text manually.

Import Necessary Namespaces

First, import the necessary namespaces that will be needed. The namespace

StarCommunity.Modules.NMLis described by clicking on the name. Make sure you also

add the mentioned assembly as a reference, as mentioned in section 1.1.1.

using StarCommunity.Modules.NML;

Limiting Maximum Word Length

To have a NML string rendered, with words longer than a given length broken up, simply call

the static Format method in NMLModule. It is also possible to provide an NML category as an

additional argument, if desired.

NMLModule.Format

("a string with a [b]looooooooooooooooooong[/b] word", 7);

 109 (133)

2.22. OnlineStatus

The StarCommunity OnlineStatus module provides the tools to see which users are logged in

to the site. Functionality includes seeing if a user is currently online, getting the date that a

user was last online and getting a list of the last logged in users.

2.22.1. Seeing if a User is Online

It is easy to see if a user is currently online. This can be used on the site to indicate the user’s

status.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to see if a user is online. The

namespaces StarCommunity.Core, StarCommunity.Core.Modules.Security and

StarCommunity.Modules.OnlineStatus are described by clicking on their respective

names. Make sure you add the assembly as a reference, mentioned in section 1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.OnlineStatus;

Seeing if a User is Online

The following code shows how to retrieve a user and to determine the online status.

//Get the logged in user

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(1234);

//Flag to see if the user is online

bool isOnline = OnlineStatusModule.IsOnline(user);

2.22.2. Getting a User’s Last Login Date

The OnlineStatus module provides functionality to return a date indicating the date and time

that a user was last online. This date can then for example be displayed on the user’s profile

page.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to see if a user is online. The

namespaces StarCommunity.Core, StarCommunity.Core.Modules.Security and

StarCommunity.Modules.OnlineStatus are described by clicking on their respective

names. Make sure you add the assembly as a reference, mentioned in section 1.1.1.

 110 (133)

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.OnlineStatus;

Getting a User’s Last Login Date

The following code displays how to retrieve the last date a user was logged in.

//Get the logged in user

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.GetUser(1234);

//Get the date this user was last online

DateTime lastLogin = OnlineStatusModule.GetLastLogin(user);

2.22.3. Getting Currently Logged in Users

Most communities want to display a listing of the last users that logged it. This is easy to do

using the OnlineStatus module.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to see if a user is online. The

namespaces, StarSuite.Core.Modules.Security and

StarCommunity.Modules.OnlineStatus are described by clicking on their respective

names. Make sure you add the assembly as a reference, mentioned in section 1.1.1.

using StarSuite.Security;

using StarCommunity.Modules.OnlineStatus;

Getting Currently Logged in Users

The code below shows how to get the last ten logged in users.

int numUsersToGet = 10;

UserCollection onlineUsers =

 OnlineStatusModule.GetLastLogins(numUsersToGet);

 111 (133)

2.23. Poll

The Poll module provides functionality that enables the creation of polls, voting and getting the

vote count of specific choices within a poll. Voting in polls is available not only for the

community members but community site visitors can also take part in voting; this can be

useful to get feedback even from people who are not members.

2.23.1. Adding a Poll

Before a poll can be used, first it has to be created and added to the community. To add a

poll, first an object of Poll type has to be created, and then it has to be committed in the

database using the AddPoll method of the PollHandler class.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to add a poll. The namespaces

StarSuite.Core, StarCommunity.Core and StarCommunity.Modules.Pollare

described by clicking on their respective names. Make sure you add the assembly as a

reference, mentioned in section 1.1.1.

using StarSuite.Core;

using StarCommunity.Core;

using StarCommunity.Core.Modules;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Poll;

Add a Poll

In this example, we will add a test poll to the community. The poll will contain three choices,

and will not be assigned to any site. First, an object of the Poll type is created, and then it

has to be committed to the database using the AddPoll method of the PollHandler class.

// Poll text

string text = "Best hamburgers are made by:";

// Poll author – current user will be the author

IUser currentUser = (IUser)StarCommunitySystem.

 CurrentContext.DefaultSecurity.CurrentUser;

IAuthor author = new UserAuthor(currentUser);

// Poll activity

bool isActive = true;

// Poll site – when set to null, the poll is not assigned

ISite site = null;

// Start and end date when voting can occur

DateTime start = new DateTime(2007,3,1);

DateTime end = new DateTime(2007,4,1);

// Create a poll object

 112 (133)

Poll poll = new Poll(text, author, isActive, site, start, end);

// Create two choices – when creating Choice set text and order

Choice choice1 = new Choice("McDonald’s", 0);

Choice choice2 = new Choice("Burger King", 1);

// Add choices to the poll

poll.Choices.Add(choice1);

poll.Choices.Add(choice2);

// Commit poll object in database;

// after this operation poll’s ID property is set

poll = PollHandler.AddPoll(poll);

2.23.2. Removing a Poll

When a poll is no longer needed, it can be removed from the community database. To remove

a poll, we need to get the poll information from the database (get the Poll object). Then, the

poll can be deleted using the RemovePoll method of the PollHandler class.

Import Necessary Namespaces

First, import the necessary namespace that will be used to remove a poll. The namespace

StarCommunity.Modules.Poll is described by clicking on its name. Make sure you add

the assembly as a reference, mentioned in section 1.1.1.

using StarCommunity.Modules.Poll;

Remove a Poll

In the example below, we assume that we know which poll that shall be removed – the poll ID

is known (previously selected or found). The Poll object is created by getting it from the

database by ID, and then the poll is removed using the RemovePoll method of the

PollHandler class.

// Get the poll from the database

Poll poll = PollHandler.GetPoll(334);

// Remove the poll from the database

PollHandler.RemovePoll(poll);

2.23.3. Voting in a Poll

Voting can be available for community members only, or for all site visitors. If you decide to

use the Vote object constructor with the user parameter, you have to remember that logged

in users will be able to vote only once in a poll, because the framework checks whether or not

a user already voted in the poll. This allows for controlling the voting process – one user

cannot vote more than once. On the other hand, you may decide not to register who voted and

 113 (133)

how they voted, and not to provide user information to the vote. This way un-registered users

are allowed to vote, users can vote more than once.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to vote in a poll. The namespaces

StarCommunity.Core, StarCommunity.Core.Modules.Security and

StarCommunity.Modules.Poll are described by clicking on their respective names. Make

sure you add the assembly as a reference, mentioned in section 1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Poll;

Voting in a Poll

To vote in a poll, you have to get the Poll object that the user wants to vote in. After that, the

Choice within the Poll has to be selected, and used to construct the Vote object. In this

example the Vote object is created using a constructor that takes the current user as the one

that votes in the poll.

// Get the poll to vote

Poll poll = PollHandler.GetPoll(11);

// Get the choice to vote to

Choice choice = poll.Choices[1];

// Get the current user that will vote

IUser currentUser = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.CurrentUser;

// Create Vote object

Vote vote = new Vote(choice, currentUser);

// Register the vote in the database

PollHandler.Vote(vote);

2.23.4. Display the Current State of a Poll

When creating a poll, there is a need not only to allow users to vote in it, but also to show

them the results of the voting. There are two main object properties that help to determine

current status: Poll.VoteCount, which gets the total number of votes in this poll, and

Choice.VoteCount, which gets the number of votes of this choice. Knowing those two

numbers, it is easy to calculate distribution of votes between choices. In this example we will

create a table with percentage values that describe vote distribution in the poll.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to vote in a poll. The namespaces

StarCommunity.Core and StarCommunity.Modules.Poll are described by clicking on

 114 (133)

their respective names. Make sure you add the assembly as a reference, mentioned in section

1.1.1.

using StarCommunity.Modules.Poll;

Get the Current State

In the example below, we will create a table of integer values that represent percentage

distribution of votes among poll choices. In a real life scenario, these numbers can be used

e.g. to display a percentage bar chart that will show how people voted in this poll.

// Get the poll get state

Poll poll = PollHandler.GetPoll(11);

// Create table to keep the percentages

int[] percentage = new int[poll.Choices.Count];

int choiceVoteCount = 0;

int totalVotes = poll.VotesCount;

// Fill the table with calculated percentages

for(int ix = 0; ix < poll.Choices.Count; ix++)

{

 choiceVoteCount = poll.Choices[ix].VoteCount;

 percentage[ix] = (int)((((float)choiceVoteCount)/totalVotes)*100);

}

After a poll ha been retrieved from the database, we have access to all the properties of the

poll itself, as well as its choices. There is no need to use other PollHandler methods to

retrieve information about the poll – the properties provide all necessary data.

2.23.5. Adding Choices after Creation

The poll choices do not have to be added before the poll is committed in the database. It is

possible to create a poll with its text (a question), and after that to add choices (e.g. after a

research on what choices are available). This example will present how to update a poll with

new choices.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to add choices to a poll. The

namespaceStarCommunity.Modules.Poll is described by clicking on its name. Make

sure you add the assembly as a reference, mentioned in section 1.1.1.

using StarCommunity.Modules.Poll;

 115 (133)

2.23.6. Add Choices to Existing Poll

First, we will need to retrieve the Poll object from the database. After that, we can create as

many Choice objects as we need and add them to the Choices collection of the Poll

object. When all Choice objects have been added, we need to save the changes in the

database – we use the UpdatePoll method of the PollHandler class. The PollHandler

adds, updates or removes any changed choices within the Poll.

// Retrieve Poll from the database

Poll poll = (Poll)PollHandler.GetPoll(33).Clone();

// Determine current maximum choice order

int maxOrder = 0;

foreach(Choice ch in poll.Choices)

{

 if (ch.Order > maxOrder)

 maxOrder = ch.Order;

}

// Create two additional choices to add – when creating Choice

// set text and order

Choice choice1 = new Choice("Added choice 1", ++maxOrder);

Choice choice2 = new Choice("Added choice 2", ++maxOrder);

// Add choices to the poll

poll.Choices.Add(choice1);

poll.Choices.Add(choice2);

// Commit poll object in database

poll = PollHandler.UpdatePoll(poll);

 116 (133)

2.24. StarViral

The StarViral Module provides a useful viral marketing tool to attract more members to the

community. We can imagine a scenario when each member of the community is granted

points for each new member that is added from the user’s referral – this scenario is very easy

to implement using the StarViral Module. Campaigns can be administered using the

administration interface. Creation of referrals does not have to be done within a campaign, but

it is very useful to do so. When referrals are categorized within campaigns, it is easy to

compare the number of new members attracted and the number of referrals created

depending on the campaign rules, which helps to plan the next campaigns.

2.24.1. Adding a Referral

Adding a referral will store a record between the two users. If the referred user registers with

her/his e-mail address, the referral record will be updated and reflect the successful referral. A

referral does not have to belong to a campaign, but preferably it should, making it possible to

see the results in the administration interface.

Import Necessary Namespaces

First, import the necessary namespaces that will be used to add a referral. The namespaces

StarCommunity.Core, StarCommunity.Core.Modules.Security and

StarCommunity.Modules.StarViralare described by clicking on their respective names.

Make sure you add the assembly as a reference, mentioned in section 1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.StarViral;

Adding a Referral

The code below will create a referral record between the logged in user and their friend.

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.CurrentUser;

Campaign campaign = StarViralHandler.GetCampaign(1);

Referral re = new Referral("test@abc.com", "Test user name", user,

campaign);

re = StarViralHandler.AddReferral(re);

2.24.2. Display the State of Referrals

The referrals a user has made can be retrieved and displayed as a listing with the registration

state or as a count on their profile page.

 117 (133)

Import Necessary Namespaces

First, import the necessary namespaces that will be used to display the state of referrals. The

namespaces StarCommunity.Core, StarCommunity.Core.Modules.Security and

StarCommunity.Modules.StarViral are described by clicking on their respective

names. Make sure you add the assembly as a reference, mentioned in section 1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.StarViral;

Display the State of Referrals

The referrals can be retrieved easily by using the code below. If the boolean property

HasRegistered is set to true, the referred user has registered, if false, the user has not

registered.

IUser user = (IUser)StarCommunitySystem.

CurrentContext.DefaultSecurity.CurrentUser;

//Get all referrals a user has made to display in a listing

int totalHits = 0;

ReferralCollection referrals = StarViralHandler.GetReferrals(user,

1, 10, out totalHits,

new ReferralSortOrder(ReferralSortField.ReferralDate,

SortDirection.Descending)

);

//Get the total number of referrals a user has made

int myReferralCount = StarViralHandler.GetNumberOfReferrals(user,

false);

 118 (133)

2.25. Webmail

Webmail management in StarCommunity is done through the WebmailHandler class in the

StarCommunity.Webmail namespace.This article shows you, the developer, examples of

how to add Webmail functionality to a community site with the help of the StarCommunity

Framework.

2.25.1. Getting the status of an account

It is essential to know whether a user has a mail account, and if so, that it is active.

Import Necessary Namespaces

First, import the necessary namespaces that will be needed. The namespaces

StarCommunity.Core, StarCommunity.Core.Modules.Security and

StarCommunity.Modules.Webmail are described by clicking on their respective names.

Make sure you also add the mentioned assemblies as references, as mentioned in section
1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Webmail;

Getting the Account for a User and the Status of that Account

First we get the desired User object, then the MailAccount for that user, and from the

account, we can then get the MailAccountStatus.

IUser user = (IUser)StarCommunitySystem.

 CurrentContext.DefaultSecurity.GetUser(17);

MailAccount account = WebmailHandler.GetMailAccount(user);

MailAccountStatus status =

WebmailHandler.GetMailAccountStatus(account);

MailAccountStatus itself is an enum with the values Active, Deactivated and

DoesNotExist. This way you can tell if there is an account, and if so, if it is active or not.

2.25.2. Creating an account

For a site member to be able to receive e-mail, they need to have an account as well as an

address associated with that account. If a user does not already have an account, one will

need to be created.

Import Necessary Namespaces

First, import the necessary namespaces that will be needed. The namespaces

StarCommunity.Core, StarCommunity.Core.Modules.Security and

StarCommunity.Modules.Webmail are described by clicking on their respective names.

Make sure you also add the mentioned assemblies as references, as mentioned in section
1.1.1.

 119 (133)

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Webmail;

Creating the Account

To create the account, we get the User for which the account is to be created, and then call

the AddMailAccount method in the WebmailHandler, specifying the local part of the

address (the part before the “@” sign) to be associated with the new account. Optionally you

can also supply a Domain. If no domain is supplied, the one set in the configuration file is

used as the default.

Domain domain = WebmailHandler.GetDomainByDomainName("my.domain");

IUser user = (IUser)StarCommunitySystem.

 CurrentContext.DefaultSecurity.GetUser(17);

WebmailHandler.AddMailAccount(user, "address.part", domain);

The account is now created on the mail server, and incoming messages to this address will be

accepted from this point on.

It is important to note that the local part of the address has to be unique; it is therefore a

good idea to think of some means of making sure that collisions will not occur. For instance,

the StarCommunity username may be used (as that is known to be unique), provided that it

does not contain any illegal characters.

2.25.3. Disabling, Reactivating and Permanently Removing Accounts

It may be of interest to disable an account for different reasons or to remove an account

entirely.

For instance, the mail account may be a premium service, which should be disabled if

the user stops paying. Another example may be a misbehaving user that should have their

account removed.

Keep in mind that when a StarCommunity user is soft-removed, reactivated or

permanently removed, these changes also reflect on the user’s mail account automatically, if

there is one.

Import Necessary Namespaces

First, import the necessary namespaces that will be needed for this. The namespaces

StarCommunity.Core, StarCommunity.Core.Modules.Security and

StarCommunity.Modules.Webmail are described by clicking on their respective names.

Make sure you also add the mentioned assemblies as references, as mentioned in section
1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Webmail;

 120 (133)

Soft Removing an Account

To disable an account, we get the account for the relevant user and call the

SoftRemoveMailAccount method in the handler. Note that this is automatically done when

soft removing a user in the administration interface.

IUser user = (IUser)StarCommunitySystem.

 CurrentContext.DefaultSecurity.GetUser(17);

MailAccount account = WebmailHandler.GetMailAccount(user);

WebmailHandler.SoftRemoveMailAccount(account);

Now the account has been disabled. This means that no mail can be delivered to it and that

you can no longer get mail from this account.

Restoring a soft removed account

To reactivate a disabled account, we get the account for the relevant user and call the

SoftRestoreMailAccount method in the handler. Note that this is automatically done

when restoring a user in the administration interface.

IUser user = (IUser)StarCommunitySystem.

 CurrentContext.DefaultSecurity.GetUser(17);

MailAccount account = WebmailHandler.GetMailAccount(user);

WebmailHandler.SoftRestoreMailAccount(account);

Now the account has been restored. Any messages which were there before the account was

disabled are now available again.

Permanently Removing an Account

To permanently remove an account, we get the account for the relevant user and call the

RemoveMailAccount method in the handler. Note that this is automatically done when

permanently removing a user in the administration interface.

WebmailHandler handler = new WebmailHandler();

IUser user = (IUser)StarCommunitySystem.

 CurrentContext.DefaultSecurity.GetUser(17);

MailAccount account = WebmailHandler.GetMailAccount(user);

WebmailHandler.RemoveMailAccount(account);

Now this account has been permanently removed. A new account would have to be added for

this user to be able to use Webmail functionality again.

2.25.4. Managing the Mailbox Tree for an Account

The mail server has a tree structure of mailboxes, in which the actual messages reside. You

can create and remove folders as you wish using the Webmail Module. Typically it may be of

interest to create a “Sent” folder in which copies of outbound messages can be saved.

 121 (133)

Import Necessary Namespaces

First, import the necessary namespaces that will be needed. The namespaces

StarCommunity.Core, StarCommunity.Core.Modules.Security and

StarCommunity.Modules.Webmail are described by clicking on their respective names.

Make sure you also add the mentioned assemblies as references, as mentioned in section
1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Webmail;

Creating a Mailbox

To create a new mailbox, we get the mail account for the user, then the root mailbox which we

will use as the base in this example, and then call the AddMailbox method to have a new

mailbox with the specified name created under the given mailbox.

IUser user = (IUser)StarCommunitySystem.

 CurrentContext.DefaultSecurity.GetUser(17);

MailAccount account = WebmailHandler.GetMailAccount(user);

Mailbox root = account.RootMailbox;

WebmailHandler.AddMailbox("name", root);

Accessing a Mailbox

The mailboxes in an account form a tree structure. The root mailbox is the only one which is

explicitly referenced from the outside, but it is easy to get to any given mailbox using the

ChildMailboxes property which is available on all mailboxes.

IUser user = (IUser)StarCommunitySystem.

 CurrentContext.DefaultSecurity.GetUser(17);

MailAccount account = WebmailHandler.GetMailAccount(user);

Mailbox root = account.RootMailbox;

Mailbox subMailbox = root.ChildMailboxes["name"];

This way, you can access a mailbox by its name, or you can iterate over the

ChildMailboxes as a list, depending on your needs.

2.25.5. Getting Messages

The center piece of any Webmail implementation is the messages. This article will show

examples of how to access the actual messages.

Import Necessary Namespaces

First, import the necessary namespaces that will be needed for this. The namespaces

StarCommunity.Core, StarCommunity.Core.Modules.Security and

 122 (133)

StarCommunity.Modules.Webmail are described by clicking on their respective names.

Make sure you also add the mentioned assemblies as references, as mentioned in section
1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Webmail;

Getting a List of Messages

To get a list of messages, we first get the mail account of the user, we then call the

GetMessages method in the WebmailHandler, specifying the mailbox, the paging

information (page size and page number to retrieve) and the sort order.

IUser user = (IUser)StarCommunitySystem.

 CurrentContext.DefaultSecurity.GetUser(17);

MailAccount account = WebmailHandler.GetMailAccount(user);

MessageSortOrder order =

new MessageSortOrder(MessageSortField.Date,

SortDirection.Descending);

Mailbox mbox = account.RootMailbox;

int totalHits = 0;

MessageCollection messages = WebmailHandler.GetMessages(mbox, 1, 20,

out totalHits, order);

The returned MessageCollection now holds the first 20 messages from the specified

mailbox. This collection can now for example be iterated over to display a message listing,

with all the appropriate information available.

Notes Regarding Handling of Received Messages

It is important to note that Message is the base class for ServerMessage (any message that

has been retrieved from the mail server) and LocalMessage (any message that is being

constructed locally to be sent). Some properties specific to an incoming message is only

available when it is treated as a ServerMessage, so a cast may be necessary if the

message is for example taken from a MessageCollection.

It is also worth noting that accessing the TextBody, HTMLBody and Attachments properties

of a ServerMessage imposes significant overhead compared to other properties, as these

require the full message to be transferred from the mail server. Doing so also sets the

message as read.

It is therefore not advisable to include these properties in message listings and similar if it can

be avoided, but rather only use those when displaying a complete individual message.

2.25.6. Sending a Message

Another very central part of any Webmail implementation is the possibility to send mail. In this

article we will show a basic example of how to send mail.

 123 (133)

Import Necessary Namespaces

First, import the necessary namespaces that will be needed for this. The namespaces

StarCommunity.Core, StarCommunity.Core.Modules

This namespace contains the interface IStarCommunityEntity and the abstract

implementation classStarCommunityEntityBase. IStarCommunityEntity implements the

blueprint for tagging, attributes, rating and categorization. Also the Author classes and
interfaces are located here, allowing for guests and users to identify themselves when making
posts.

StarCommunity.Core.Modules.Security and StarCommunity.Modules.Webmailare

described by clicking on their respective names. Make sure you also add the mentioned
assemblies as references, as mentioned in section 1.1.1.

using StarCommunity.Core;

using StarCommunity.Core.Modules.Security;

using StarCommunity.Modules.Webmail;

Sending a Message

First, we get the mail account of the sending user, we use the account to get the sender’s mail

address, so that we can set that as the From address. We then proceed by setting other

properties of the LocalMessage object. To finally send the message, we call SendMessage

in the WebmailHandler.

IUser user = (IUser)StarCommunitySystem.

 CurrentContext.DefaultSecurity.GetUser(17);

MailAccount account = WebmailHandler.GetMailAccount(user);

LocalMessage message = new LocalMessage();

message.From = wh.GetMailAddress(account);

message.To.Add(new MailAddress("Name", "email@domain"));

message.TextBody = "Text version";

message.HTMLBody = "HTML version";

WebmailHandler.SendMessage(message);

Note that it is recommended to either have only TextBody set or to have both TextBody and

HTMLBody set, this is for maximum compatibility with different mail user agents.

 124 (133)

2.25.7. The Configuration File

The configuration file for the Webmail Module requires custom values for the module to work

as it relies on an external mail server.

In this section we will go through the meaning of the different settings.

PARAMETER TYPE DESCRIPTION

IMAPBaseFolder String Name of the base folder on the

IMAP server. Typically “INBOX”.

IMAPFolderSeparator String The folder separator on the IMAP

server. Typically a single dot (“.”).

IMAPPort Int The port number the IMAP server is

listening on. Typically 143.

IMAPServer String The hostname or IP that the IMAP

server is reachable at.

SMTPPort Int The port number the SMTP server is

listening on. Typically 25.

SMTPServer String The hostname or IP that the SMTP

server is reachable at.

UsernamePrefix String The prefix used for webmail IMAP

account usernames. Check with the

server administrator.

WebserviceURL String The URL for the webservice used for

creating accounts, etc. Check with

the server administrator.

AccountQuota Int Default IMAP account quota. In

kilobytes.

WebserviceSecret String The shared secret used when

communicating with the webservice.

Check with the server administrator.

IMAPAuthMode String The authentication mode used with

the IMAP server. Available are

“plain” or “crammd5”.

DomainName String The domain name that will be used

as the default domain when adding

webmail addresses.

DiskCachePath String The path to a folder dedicated to

storing cached copies of mail data.

This folder must be writable to the

Windows user that runs the web

application.

The configuration file for the Webmail Module requires custom values for the module to work

as it relies on an external mail server.

 125 (133)

3. Extending StarCommunity

3.1. Extending StarCommunity classes

This tutorial describes howto create a derived class with custom attributes, and that exposes those

attributes as fixed properties in the derived class. This is in many cases a more elegant approach

than accessing the attributes directly via the attribute name.

In this tutorial we assume that we have a community implementation that requires the

EntryComment class in Blog to have an ImageGallery connected to it, where users can

upload pictures when commenting an Entry. One way of accomplishing this would of course be

to just add an attribute to the EntryComment as described in section 2.5 and be done with it.

However, there is a more elegant way to use attributes without the need of keeping track of the

attribute names in your ASP.NET page.

We start by creating a new class derived from EntryComment.

using System.Collections.Generic;

using StarCommunity.Modules.Blog;

using StarCommunity.Modules.ImageGallery;

namespaceMyCommunity

{

 //Inherit the EntryComment class

 public class MyEntryComment : EntryComment

 {

 // The constructor takes DbDataReader and passes it to base

class

 public MyEntryComment(DbDataReader reader) : base(reader) { }

 // Define the ImageGallery property for get and set

 public ImageGallery ImageGallery

 {

 get{return

this.getAttributeValue<ImageGallery>(“attr_ig”);}

set{blog.entity.SetAttributeValue<ImageGallery>("attr_ig“,value));}

 }

 }

}

In order to make StarCommunity aware of this new type so instances of the type can be returned, we
need to create an EntityProvider.This is done by creating a new

class,implementingIEntityProvider in the StarSuite.Core.Data namespace.

using System.Collections.Generic;

using StarSuite.Core.Data;

using StarCommunity.Modules.Blog;

using StarCommunity.Modules.ImageGallery;

 126 (133)

namespace MyCommunity

{

 //Implement the IEntityProvider interface

 public class MyEntryCommentEntityProvider :

StarSuite.Core.Data.IEntityProvider

 {

private static MyEntryCommentEntityProvider

m_myEntryCommentEntityProvider =

null;

 //Singleton

 public static StarSuite.Core.Data.IEntityProvider

GetProviderInstance()

 {

 if (m_myEntryCommentEntityProvider == null)

 m_myEntryCommentEntityProvider = new

MyEntryCommentEntityProvider ();

 return m_myEntryCommentEntityProvider;

 }

 // Override the GetEntityInstance by reader method

public object GetEntityInstance(Type type, DbDataReader reader)

 {

 //If the specified type is EntryComment or MyEntryComment,

call

 //MyEntryComment constructor that will just pass the reader

argument to

 //its base class

 if (type == typeof(EntryComment) || type ==

typeOf(MyEntryComment)

 return new MeEntryComment(reader);

 }

 // Override the GetEntityInstance by id method

 public object GetEntityInstance(Type type, int id)

 {

 //If the specified type is EntryComment or MyEntryComment,

just get

 //EntryComment by id via BlogHandler

if (type == typeof(EntryComment) || type == typeOf(MyEntryComment)

 return BlogHandler.GetEntryComment(id);

 }

}

}

Now, we have created our entity provider that can return instances of your new type

MyEntryComment. Only one more thing remains and that is to register it in the

EntityProvider.config, so StarCommunity knows that this entity provider should override the

existing one for EntryComments.

<EntityProvider>

<Name>MyCommunity.MyEntryCommentEntityProvider, MyCommunity</Name>

 127 (133)

<SupportedTypes>

 <SupportedType>

<Name>MyCommunity.MyEntryProvider, MyCommunity</Name>

</SupportedType>

<SupportedType>

<Name>StarCommunity.Modules.Blog.EntryComment,

StarCommunity.Modules.Blog</Name>

</SupportedType>

</SupportedTypes>

</EntityProvider>

All request for the type StarCommunity.Modules.Blog.EntryComment and

MyCommunity.MyEntryComment will now be run through MyEntryCommentEntityProvider.

Below is an example where we get the images from the image gallery property in MyEntryComment

class.

using StarCommunity.Modules.Blog;

using MyCommunity;

//Get an entry comments

MyEntryComment comment = (MyEntryComment)BlogHandler.GetEntryComment(1234);

ImageCollection ic =

 comment.ImageGallery.GetImages(1, 20, out totalHits,

 new ImageSortOrder(ImageSortField.Order, SortDirection.Ascending));

 128 (133)

3.2. Benefit from StarCommunity functionality in third party classes

Third part classes can benefit from StarCommunity functionality by inheriting the

StarCommunityEntityBase class or implementing its interfaces. This tutorial describes the creation

of a third party class, MyClass, which inherits the StarCommunityEntityBase class in the

StarCommunity.Core.Modulesnamespace. StarCommunityEntityBase requires that a

unique id for the type is passed to its constructor and gives inheriting classes the properties and

methods for StarCommunity Categories, Tags, Attributes and Rating.

using StarCommunity.Core.Modules;

namespace MyCommunity

{

 //Inherit the StarCommunityEntityBase class

 public class MyClass : StarCommunityEntityBase

 {

private string m_name;

 public MyClass(int id, string name) : base(id)

 {

 m_name = name;

}

 public string Name

 {

 get{return m_name;}

 set{m_name = value;}

 }

 }

}

In StarCommunity there is a handler for every module, whichcontains the methods, which in turn does

the database communication. In this example we create one for MyClass. It will be used in the entity

provider (see 1.2.4) to get a MyClass instance from ID.This is necessary for StarCommunity to handle

this type properly. However, this particular method may be implemented in any way you wish, just as

long as it returns and instance of MyClass based on ID.

namespace MyCommunity

{

 public class MyClassHandler

 {

 //In reality, this method would probably involve a database query to create

 //the object from database.

 public static GetMyClass(int id)

 {

 return new MyClass(id, “myclass name”);

 }

 }

}

 129 (133)

Since there aremethods in StarCommunity that returns collections of entities (e.g.

CategorizedEntityCollection), StarCommunity needs to recognize the new MyClass type. We

need to create an EntityProvider for MyClass.

using System.Collections.Generic;

using StarSuite.Core.Data;

using MyCommunity;

namespace MyCommunity

{

 //Implement the IEntityProvider interface

 public class MyClassEntityProvider : StarSuite.Core.Data.IEntityProvider

 {

 private static MyClassEntityProviderm_myClassEntityProvider = null;

 //Singleton

 public static StarSuite.Core.Data.IEntityProvider GetProviderInstance()

 {

 if (m_myClassEntityProvider == null)

 m_myClassEntityProvider = new MyClassEntityProvider ();

 return m_myClassEntityProvider;

 }

 // Implement the GetEntityInstance by reader method

 //to construct your object from database

 public object GetEntityInstance(Type type, DbDataReader reader)

 {

 if (type == typeof(MyClass)

 return new MyClass(reader.GetInt32(0), reader.GetString(1));

 }

 // Implement the GetEntityInstance by id method

 public object GetEntityInstance(Type type, int id)

 {

if (type == typeof(MyClass)

 return MyClassHandler.GetMyClass(id);

 }

 }

}

Now we may use the category system to categorize objects of type MyClass

3.2.1. Categorize MyClass entities

Since MyClass is derived from StarCommunityEntityBase, you may use the category

system directly as you would with any other StarCommunity class. Here we have some

examples of an Add and Update method for MyClass, notice that after running the MyClass

database-query we call the UpdateEntity method of the base class, which is

StarCommunityFactoryBase.

using StarCommunity.Core.Modules.Data;

using StarCommunity.Core.Modules.Categories;

 130 (133)

using MyCommunity;

....

//Get an instance of MyClass via id

MyClass myClass = MyClassHandler.GetMyClass(1);

//Get a category by id

Category category = CategoryHandler.GetCategory(1);

//Add the category

myClass.Categories.Add(category);

MyClassHandler.UpdateMyClass(myClass);

....

public class MyClassHandler :

 StarCommunity.Core.Modules.Data.StarCommunityFactoryBase

{

// inserting the data

public static void AddMyClass(MyClass mc)

{

bool inTransaction = DatabaseHandler.InTransaction;

if (!inTransaction)

DatabaseHandler.BeginTransaction();

 try

{

int newId = Convert.ToInt32(DatabaseHandler.

GetScalar(true, "spAddMyClass", parameters));

base.UpdateEntity(mc, newId);

if (!inTransaction)

DatabaseHandler.Commit();

}

catch (Exception)

{

if (!inTransaction)

DatabaseHandler.Rollback();

throw;

}

 }

// updating the data

public static void UpdateMyClass(MyClass mc)

{

bool inTransaction = DatabaseHandler.InTransaction;

if (!inTransaction)

DatabaseHandler.BeginTransaction();

 try

{

DatabaseHandler.

 ExecuteNonQuery(true, "spUpdateMyClass",

parameters));

 131 (133)

base.UpdateEntity(mc);

if (!inTransaction)

DatabaseHandler.Commit();

}

catch (Exception)

{

if (!inTransaction)

DatabaseHandler.Rollback();

throw;

}

 }

}

UpdateEntity saves all categories, tags, attributes and rating settings on MyClass.
UpdateEntity has two overloads, during an insert we call the overload where we can pass the
new id, since it’s not in our object at the moment, and when we do an update, we simply only
pass the “mc” variable. This is important to remember, since when passing an ID some
initialization may occur which is unnecessary during an update, so keep track of which
overload you call.

3.2.2. Retrieving categories for MyClass

To get a collection of all categories connected to an entity, you just call the Categories

property on the categorizable entity MyClass just as for any StarCommunity object.

//Get the MyClass to check for categories

MyClass myClass = MyClassHandler.GetMyClass(1);

//Get the categories for the blog

CategoryCollection categoryCollection = myClass.Categories;

3.2.3. Retrieving MyClass entities based on categories

Just as for StarCommunity objects, you may retrieve collections of categorized MyClass

entities via the category handler.

//Get the category for which we want entities

Category category = CategoryHandler.GetCategory(1);

//Add the category to the category collection

CategoryCollection categoryCollection = new CategoryCollection();

categoryCollection.Add(category);

//Get entities of type MyClass that have been categorized with

category

int totalItems = 0;

CategorizableEntityCollection categorizedEntities =

 CategoryHandler.GetCategorizedItems(typeof(MyClass),

 categoryCollection, 1, 10, out totalItems);

 132 (133)

3.3. Use Netstar Cache system for third party implementations

The Netstar cache system is located in the StarSuite.Core.Cache namespace. The main

class being the CacheHandler, retrieves and stores caches, keeps track of dependencies and

synchronizes events over a webserver cluster. Every object cached in this system can (if

chosen to be implemented) be identified by its primary cache key. The cache system is set to

detect this primary cache key in any lists or collections it has in its cache tree, hence

removing the cache by its primary cache key would also remove the cached lists containing

it.

The primary cache key is definied by implementing the ICacheable interface and its

CacheKey property.

public class CachedClass : StarSuite.Core.Cache.ICacheable

{

 private int m_id;

 public CachedClass(int id)

{

 m_id = id;

}

 public string[] CacheKey

 {

 get { return new string[] { “tree”, “branch”, “leaf”,

 id.ToString() }; }

 }

}

Every part added to the key represents going deeper into the tree-structure, which means if

“tree”, “branch” would be removed, all leafs under it will go with it.

 133 (133)

The following code sample shows how the dependencies are automatically being registered

when the containing “co” instance is in the cached list. RemoveCachedObject will also

remove the list from the cache.

List<CachedClass> list = new List<CachedClass>();

CacheHandler.SetCachedObject(list, “tree”, “branch”, “leaflist”);

CachedClass co = new CachedClass(1234);
List.Add(co);

CacheHandler.RemovedCachedObject(co);

Having this is mind and implementing it in a third-party solution can save a lot of time and

boost performance of features implemented into the StarCommunity platform.

